
IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID 1

Business Process Retrieval from Large Model
Repositories for Industry 4.0

Rui Zhu, Member, IEEE, Yue Huang, Ling Liu, Fellow, IEEE, Wei Zhou,

Xuan Zhang, Yeting Chen* and Li Cai*
Abstract—The process model repository has demonstrated unprecedented success in a variety of industrial and process as a

service scenarios. With the rapid increase of massive business process-related data under Industry 4.0, effectively retrieval of

process models from large process model repositories becomes a critical challenge for process mining, process deployment and

process model acquisition. To accelerate the retrieval of process models from a large process repository, existing retrieval

methods rely solely on building single dimension process model indices. In this paper we show that this single dimension indexing

approach is not only inefficient but also cumbersome for supporting high performance retrieval services over large process model

repositories. We propose a new business process model indexing and retrieval with structure and behavior fusion. In the indexing

stage, we propose a process model index generation paradigm method with two novel features. First, our index algorithm can

transform the trace equivalent process model (TEPM) with complex structures into a process tree, which can better capture

process sequence semantics than the existing approach based on block structured process model. Second, we improve the

method for computing the process tree edit distance for measuring process model similarity by introducing the process tree

similarity method, which can distinguish leaf nodes and non-leaf nodes and improve the limitations of the traditional edit distance

algorithm. Extensive experiments using real world process repositories demonstrate that the proposed methods are under

polynomial time in both the model index generation and model querying stages, and offer superior retrieval performance compared

to existing process model retrieval methods in terms of efficiency, search capability and scope.

Index Terms—business process model, complete finite prefix unfolding, Industry 4.0, process model repository, process retrieval

—————————— ◆ ——————————

1 INTRODUCTION

N the field of business process management (BPM), the
process model repository[1-3] (PMR) was proposed to

query, store and analyze process-related data. The PMR
can be used in wide and significant scenarios in process
analytics and business intelligence, such as formal model
verification[4], next event prediction[5], heterogeneous
event data matching[6, 7], natural language requirement
generation[8] and process model reuse[9].

Industrial process management also needs the support
of the PMR in Industry 4.0. Massive business processes[10]
are contained in many production control systems, such
as product design, production equipment, development,
and process perception for most core industrial products.
For instance, the lithography process and chip manufac-
turing process of the famous Dutch ASML lithography

machine company have essentially adopted the industrial
process, which is the business process in industrial manu-
facturing used to control the production and manufactur-
ing of chips[13]. Besides the PMR of the CNR Group's con-
trol product implementation has accumulated more than
200,000 process models[14], and Suncorp Bank in Aus-
tralia has more than 6,000 process models[15]. Nearly
136,000 business rules were extracted from the 2 million
lines of COBOL code in the Volkswagen Financial Car
Rental Legacy System built in the 1980s in Germany[16].

For massive and complex process models, how to effec-
tively retrieve the process models from large model repos-
itories for Industry 4.0 is an urgent problem that needs to
be solved. Compared with conventional process manage-
ment, large PMR for Industry 4.0 should have the follow-
ing four characteristics, and shorted for VVCC:

(1) Volume: As core intangible assets, business process
models are essential approaches for organizations and
their business process improvement strategies[17-19],
and decision-making through process models also are
contemporary companies’ smart knowledge-based solu-
tions by Industry 4.0 to compete in the worldwide sce-
nario [20-23]. With the continuous advancement of global
Industry 4.0, it is an indisputable fact that massive
amounts of industrial process data have gradually accu-
mulated in enterprises.

(2) Velocity: With the growth and integration of

xxxx-xxxx/0x/$xx.00 © 200x IEEE Published by the IEEE Computer Society

I

————————————————

• R. Zhu, W. Zhou, X. Zhang, and L. Cai are with the School of Software, Yunnan
University, Kunming 650091, China. E-mail: rzhu@ynu.edu.cn, zwei@ynu.edu.cn,
zhxuan@ynu.edu.cn, caili@ynu.edu.cn.

• Y. Huang is with the School of Software, Shandong University, Ji’nan 250101,
China. E-mail: xgyxhy@163.com.

• L. Liu is with the School of Computer Science, Georgia Institute of Technology
Atlanta, Georgia, USA. E-mail: ling.liu@cc.gatech.edu.

• Y. Chen is with the School of Economics and Management, Yunnan Normal Uni-
versity, Kunming 650500, China. E-mail: 17801037267@163.com.

Our deepest gratitude goes to the anonymous reviewers for their careful work and
thoughtful suggestions that have helped to improve this paper substantially. This
work was supported by National Natural Science Foundation of China under grants
62362067, 62002310; Yunnan Provincial Natural Science Foundation Fundamental
Research Project under grant 202101AT070004; Science Foundation of Yunnan Jin-
zhi Expert Workstation under grant 202205AF150006; Yunnan Provincial Key Labor-
atory of Software Engineering Open Fund Project under grant 2023SE205; Yunnan
Xing Dian Talents Support Plan.
(Corresponding author: Yeting Chen and Li Cai)

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3348294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Yunnan University. Downloaded on January 24,2024 at 18:32:46 UTC from IEEE Xplore. Restrictions apply.

mailto:rzhu@ynu.edu.cn
mailto:zwei@ynu.edu.cn
mailto:zhxuan@ynu.edu.cn
mailto:caili@ynu.edu.cn
mailto:xgyxhy@163.com
mailto:ling.liu@cc.gatech.edu
mailto:17801037267@163.com

2 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

modern technologies, including BPM, service workflow,
Internet of Things, cloud computing, service-oriented ar-
chitecture cyber-physical systems, cyber-physical produc-
tion workflows, robotic process automation in Industry
4.0, millions of business nodes, process fragments and the
rapidly growing number of business rules [24, 25]. In re-
cent decades, industry has paid attention to the manage-
ment, coordination and optimization of project workflows.
Besides, this trend has further accelerated in response to
the growing prominence of digital engineering practices
[26].

(3) Complexity: The inherent complexity of the process
model has troubled stakeholders for a long time[27]. The
fundamental reason is that the process model is a type of
special data with a graphical representation and behav-
ioral semantics. A small change of structure may result in
a major change of behavior. The structure and behavior of
the model are interdependent and coupled. However, ex-
isting approaches establish different storing and indexing
dimensions by distinguishing structure and behavior
when constructing process management systems. These
methods can manage cases, when the model scale and
number of nodes are relatively small. However, with the
massive increase in the scale and number of models, it is
obvious that the existing distinguishing structure and be-
havior can no longer effectively overcome the complexity
of the model.

(4) Fast-Changing: With the continuous development
of IIoT, industrial big data and cyber-physical systems ,
business processes are facing the challenge of fast-chang-
ing application scenarios and contexts[28]. A large num-
ber of model redesign[29], re-engineering[30] and refac-
toring[19] methods have been proposed to cope with the
constant changes of industrial processes during the imple-
mentation process to respond quickly to the current com-
plex and changeable production environment, such as
flawed workflow controls, industrial transformation dur-
ing the pandemic and unstable international scenarios.

In conclusion, the traditional method of separating
structure and behavior for retrieval requires at least two
or more times when both structure and behavior need to
be retrieved, and there is no correlation between the two
retrievals, thereby decreasing the retrieval efficacy of
models. In addition, the PMR for Industry 4.0 is con-
fronted by VVCC characteristics. Massive and complex
process models must be swiftly retrieved from PMR using
multidimensional association retrieval. The integrated
structure and behavior retrieval proposed is therefore
more appropriate for PMR management in Industry 4.0.
An important challenge is how to manage techniques effi-
ciently, accurately and easily.

In this paper, in order to efficiently query large model
repositories for Industry 4.0, we propose a new method
which support business process model indexing and

retrieval with structure and behavior fusion. Complete fi-
nite prefix unfolding technology is used to extract the re-
lationship between transitions from the process model
and excluding relationships with conflicts, and then build
an index (i.e., process tree) to greatly reduce the number
of candidate models in the large PMR, and finally evaluate
the process behavior similarity to redetermine candidates
in the restriction stage model.

The contributions of this paper can be summarized as
follows:

(1) To efficiently retrieve massive process models in the
current Industry 4.0 environment, we propose a support-
ing structure and behavior fusion business process model
indexing and retrieval method. It enhances the traditional
single-dimensional retrieval method and improves the ef-
ficiency of the query.

(2) We propose a process model index generation par-
adigm which improves the existing process model index
generation capabilities and ranges. Compared with tradi-
tional index generation methods, the proposed method
can transform the trace equivalent process model (TEPM)
with complex structures into a process tree (e.g., Fig.1),
whereas traditional methods can only transform the
block-structured process model (BSPM)[31] structure into
a behavior-equivalent process tree.

(3) We improve process tree edit distance calculating
methods for model similarity measurement and propose
a calculation method for process tree similarity. The pro-
posed method improves the traditional tree edit distance
algorithm through distinguishing leaf nodes and non-leaf
nodes.

The remainder of this paper is organized as follows: In
Section 2, current indexing and search techniques for
business process models are introduced. In Section 3, the
related concepts involved in this study are introduced. In
Section 4, the construction method for the model index
based on the process tree is discussed in detail. In Section
5, a measurement method for model similarity is pro-
posed. In Section 6, experiments for analyzing the pro-
posed methods are presented. In Section 7, the study is
summarized and directions for future work are suggested.

2 RELATED WORK

Process retrieval involves entering search conditions in a
specific format to the PMR, and then returning a set of
process models that satisfy the requirements[32]. A pro-
cess model is a type of special data that has both a graph-
ical representation and behavioral semantics. Therefore,
compared with querying traditional database systems,
process retrieval is an important and challenging task that
is still in the initial stage[28, 33-35]. Existing process re-
trieval methods can be classified into three categories ac-
cording to the research content: process index

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3348294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Yunnan University. Downloaded on January 24,2024 at 18:32:46 UTC from IEEE Xplore. Restrictions apply.

AUTHOR ET AL.: TITLE 3

construction, matching algorithm, and Process Query Lan-
guage (PQL) [36-39]. Process query language, as a high-
level interface, is generally determined by the low-level
storage structure and index construction. The main focus
in this study is the two other decisive aspects: process in-
dex construction and matching algorithm of the query.

The process index is considered to be an important en-
abling technology used to speed up model retrieval.
Huang et al. [40] proposed an OPTR_index based on the
quantitative ordering relation with time and probability
constraints to query large process model repositories in a
smart city cloud. Jin et al.[41] proposed a method to build
a B+ tree based on the path as a structure-based precise
index. Hofstede et al. [42] defined a process model query
language based on the semantic relationship between
tasks in the process model that is independent of any spe-
cific process modeling symbols to build the model index,
thereby allowing users to formulate queries in a similar
manner to modeling the conditional model. Mahleko et
al.[43] proposed a business process index matching
method based on finite state machine modeling. Beheshti
et al.[34] introduced an extensible large-scale process
data querying and analysis platform called ProcessAtlas,
and provided services for discovering, extracting, and an-
alyzing process knowledge graphs.

The matching algorithm is an important basis for
searching PMR. Techniques for process model search can
be divided into two main groups: (1) query based on graph
structure; and (2) query based on behavior semantics[14,
31, 44, 45]. Jin et al.[46] used an index called TaskEdgeIn-
dex for query processing, and estimated the minimum
number of edges required to measure the structure simi-
larity of business process models. Zha et al. [47] proposed
transition adjacent relations to evaluate the model behav-
ior similarity, and used an index to support behavior-
based similarity model retrieval. Leopold et al.[44] ad-
dressed the textual description similarity problem and
proposed a technique that can search textual as well as
model-based process descriptions. Gómez-López et al.[48]
proposed an architecture that integrates the business pro-
cess, business process instance, and business data models

using their meta-models to take advantage of the three
models, and the technologies support querying the three
isolated models. Brdjanin et al.[49] implemented an
online web-based model-driven tool called AMADEOS,
which automatically derives conceptual database models
from process models that are represented by different no-
tation and also serialized differently. Huang et al.[50] pre-
sented an approach to automating business process con-
solidation by applying process topic clustering based on
business process libraries using a graph mining algorithm
to extract process patterns, identify frequent subgraphs
under the same process topic, fill the pertinent subgraph
information into a table of frequent process subgraphs,
and finally merge these frequent subgraphs to obtain
merged business processes using a process merging algo-
rithm.

Although some progress was made in the aforemen-
tioned studies, there are still relatively few research re-
sults regarding new VVCC features in industrial processes.
In most of the aforementioned studies, the process model
was regarded as a graph with both structure and behavior
for storage and retrieval. However, many graph algorithms
are computationally expensive (e.g., many are NP-com-
plete) and the size of business process models essentially
determines the runtime cost. Therefore, simply improving
the accuracy of process retrieval can no longer meet the
requirements for process retrieval efficiency in the current
industrial big data era. Based on the above discussion, in
this study, a new process model storage and index struc-
ture for efficient query analysis is proposed.

To the best of the authors' knowledge, this study is the
first to express the behavior and structure of a model sim-
ultaneously, and it has no need to establish multiple re-
trieval dimensions. Using the method proposed in this
study only requires calculating the similarity between tree
structures, which can greatly improve the retrieval effi-
ciency of the model.

3 PRELIMINARIES

3.1 Business Process and Process Tree

In this section, the basic concepts and notation related to
Petri nets and complete finite prefix unfolding are re-
viewed, and will be used to support the discussion that
follows.

Definition 1. Business process model. A business process
model is a 4-tuple N=(P, T; F, M0) that satisfies the fol-
lowing:
(1) P is a place set and T is a transition set, where P∩T≠Φ

and P∪T≠Φ, and a place or transition is generically called
a node.

(2) F⊆P×T∪T×P is the flow relation and generically

called an arc.
(3) M0⊆P is the initial marking of (P, T; F).

I

J

A

CB

D

G

F

E

H

K

1

6

3

0

2

8

7

5

4

A B

×

C D

×

E F

× G H

K J

 I

Process index by process treeBusiness process models

Strutcture Behavior Semantics Structure + Behavior + Semantics Process

tree index

Process Repository

Query Requirements

Traditional Multidimensional Query Our Process Tree Index

Multidimensional Index

Transfor

Motivation:

Multi-dimensional

approach easy

implementation but

multiple queries,

unefficiency, and

redundancy.

The proposed process

tree index integrates

multiple dimensions,

requiring only one query

for different dimensional

query requirements

Fig.1. Motivational example of transferring a process model to process tree.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3348294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Yunnan University. Downloaded on January 24,2024 at 18:32:46 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

(4) For a node x∈P∩T, the preset of x is denoted by ·x
and the postset of x is denoted by x·.

The Petri net system is used to represent the process
model, as Petri nets have a strict mathematical represen-
tation and are the most popular.. For other related con-
cepts of Petri nets, please refer to [51, 52].

Definition 2. Process tree[53]. Let N=(P, T; F, M0) be a pro-
cess model. Then a process tree can be defined:

(1) If t∈T, t is a process tree.

(2) Let t1,t2,…tn (n>0) be process trees, ⨀ be the behavior
of t1,t2,…tn, and ⨀ (t1,t2,…tn) be a process tree.

In this study, four types of relationship symbols are

used: sequence (→), parallel (⋀), choice (×), and loop (↻).

⨀ indicates one of the relationships. ⨀ represents the re-
lationship between multiple transitions. ⨀ can be empty,
or contain one or more relationships. For related concepts
about process trees, refer to [53, 54].

3.2 Complete Finite Prefix Unfolding

To extract the behavior of a business process, it is neces-
sary to analyze the process model. The traditional analysis
method mainly uses the reachable tree or reachable
graph[55, 56], but these methods encounter the problem
of state space explosion. To avoid this problem, Esparza et
al. [57, 58] proposed complete finite prefix unfolding. It
can expand the process model into a branching process
that contains an occurrence net and cut-off events. It uses
the set of possible extensions of the branching process
and continuously expands the branching process until the
set of possible extensions becomes an empty set or a cut-
off event is encountered.

Definition 3. Occurrence net[58]. A 3-tuple o=(B, E; F') is an
occurrence net, where B denotes the conditions set and

E denotes the events set. B∩E≠Φ and B∪E≠Φ, and

F'⊆B×E∪E×B, which satisfy the following:

(1) ∀b∈B, |·b|≤ 1.

(2) ∀e∈E, E is not in self-conflict.

(3) B∪E is a finite set.
(4) (B, E; F') is an acyclic net.

Min(N) denotes the set of minimal nodes of B∪E with
respect to the transitive closure of F'.

Given two nodes x, y∈B∪E, the relationship between

x and y is as follows:
(1) There is a path from x to y, and the relationship be-

tween x and y is denoted by x<y.
(2) There is a condition b such that the path from b to x

does not intersect the path from b to y, and the relation-
ship between x and y is denoted by x#y.

(3) If neither x<y, y<x, nor x#y, the relationship be-
tween x and y is denoted by xcoy.

Definition 4. Branching processes. Let N=(P, T; F, M0) be a
business process model and Π=(o, h) be a branch process
corresponding to N, where o=(B, E; F') is an occurrence

net and h is a homomorphism that satisfy the following:
(1) h(B)⊆P, h(E)⊆T, h(F')⊆F.
(2) Min(o) and M0 is a bijection relationship.

(3) For each e1, e2∈E, if ·e1 =·e2⋀h(e1)=h(e2), then e1=e2.

Definition 5. Configurations. A configuration C of an occur-
rence net is a set of events that satisfy the following:

(1) e∈C =>∀e'<e: e'∈C, where C is causally closed.

(2) ∀e, e'∈C: ﹁(e#e'), where C is conflict-free.

∀e∈E, the local configuration of e is a set of non-con-
flicting events that include e itself, which is denoted by [e].

Additionally, ∀e1∈[e], e1 satisfies [e1][e] and any e2∈[e]

has ﹁e2#e1.
The symbol indicates the adequate order relation-

ship between configurations, and refines ⊂; that is, if
[e]⊂[e'], then [e][e'] [58].

Definition 6. Cut. For a configuration C, the cut of C is a co-

set, which is defined as Cut(C)=(Min(N)∪C·)\·C.
Cut([e]) represents the conditions reached by the con-

figuration [t]. For any b∈Cut([e]), b=Ø must hold. h(Cut(C))
is denoted by Mark(C).

Definition 7. Cut-off event. Let Π=(o,h) be a branch process
corresponding to N, where o=(B, E; F') is an occurrence
net. An event e is a cut-off event iff Π contains a local
configuration [e'] such that Mark([e])=Mark([e']) and
[e'][e], which is denoted by corr(e)=e', and also re-
ferred to as e' is cut off by e.

I

J

A C

B D

GF

E

H

K

1

6
3'

0

2'

8

7

5

4

N1 ':

1'

2
3

0'

6'

4'

Fig.2. Unfolding instance of N in Fig.1.

N' in Fig.1 is an unfolding instance of N in Fig.2. N'
demonstrates the branching processes of N, where
[A]={A}, [G]={A, C, F, G}, and [J]={A, C, F, G, H, K, J}. Because
Mark([G])={5, 6}, Mark([J])={ 5, 6}, and [G][J], J is a cut-
off event and corr(J)=G.

4 ARCHITECTURE OF PMR FOR INDUSTRY 4.0

The architecture of PMR for Industry 4.0 is shown in Fig.3.
The architecture follows a multilayer model and consists
of four parts: Interface, Index Generation, Query process,
and Storage. In the context of Industry 4.0, multiple intel-
ligent manufacturing activities in the cyber-physical space
are driven and controlled by business process models.
Process engineers can store and retrieve business process
models through the PMR interface.

While the model is being stored, it is input to the index
generation module, through which the process model is
unfolded to obtain branching processes for subsequent
operations. Then a process tree is generated and nodes of
the tree are merged based on the extracted transition

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3348294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Yunnan University. Downloaded on January 24,2024 at 18:32:46 UTC from IEEE Xplore. Restrictions apply.

AUTHOR ET AL.: TITLE 5

relations. Next, a partial relation matrix is obtained as an
index of the model. Finally, the process model with its cor-
responding index is stored in the PMR. The index genera-
tion module consists of two main components: process
tree and partial relationship matrix generation. The de-
tails of this part are presented in Section 5.

Fig.3. Architecture of PMR for Industry 4.0.

During the search stage, process engineers can input
PQL using the interface to specify query constraints. After
the semantic analysis of PQL, the constraint conditions are
input into the PMR and an inverted table of query results
is generated based on similar values between the process
tree and the model index. Finally, through the ranking of
the query results, the final query results are returned. The
search phase is a method used to improve the retrieval
efficiency using the process tree obtained in the store
phase. The details of this part are presented in Section 6.

5 INDEX GENERATION

To improve the retrieval efficiency, the process tree is
used as the index of the process model, which incorpo-
rates the structure and behavior of the model, changes
the traditional single-dimensional retrieval method, and
improves the existing process model index generation ca-
pabilities and ranges. The algorithm for the index con-
struction of the process model can be divided into six
steps:

(1) Complete finite prefix unfolding. Unfold the model
to obtain branching processes for subsequent operations.

(2) Extract transition relationships. Determine whether
there is a mergeable relationship between each pair of
transitions in the model, and if such a relationship exists,

save it in the relationship matrix RM.
(3) Determine whether there is a reconfigurable transi-

tion relationship. Remove the conflicting relationships
and select the high priority relationships from the RM.
Then, obtain a high-priority and conflict-free set of rela-
tionships list RL. If the RL is empty, go to (4); otherwise, go
to (5).

(4) Generate the partial relationship matrix pRM. A
complex structure exists in the model, which has no cor-
responding behavior-equivalent process tree. Therefore,
in this step, according to the branching processes ob-
tained in the first step, select the locally smallest complex
structure in the process model and transform it into a
pRM. Then go to (6).

(5) Reconstruct the relationships. Merge, in turn, the
relationships in RM.

(6) Determine if there are multiple transitions. If so, go
to (1); otherwise, output the process tree.

In Algorithm 1, the input is a process model and the
output is a process tree. Consider that there may be "fault
structures" in the actual input process model. These "fault
structures" do not appear in the branching process, and
thus are not recognized by subsequent operations, but
they cause the algorithm to enter into an infinite loop.
Hence, adding a variable flag to the pseudocode prevents
the algorithm from entering into an infinite loop.

ExtractRelation() in Algorithm 1 is detailed in Algorithm
2 in Section 5.1, GetRList() and Refactor() are detailed in
Algorithms 3 and 4 in Section 5.2, and PRMGeneration() is
detailed in Section 5.3.

Algorithm 1. GenerationOfTheProcessTree

Input: a model N=(P, T; F, M0)
Output: a process tree t
1 flag=true
2 while flag:
3 flag=false
4 get a branching process Π=(o,h) with N
5 RM=ExtractRelation(N, Π)
6 RL=getRList(RM)
7 if (RL.size()==0) {
8 N'=PRMGeneration(N, Π)
9 flag=N'.T.size()==N.T.size()
10 if (flag) {N=N'} }

11 else foreach(⨀(e1, e2)∈RL) {

12 if (⨀(e1, e2) ⊂ N.T) {
13 p=Refactor(N, ⨀(e1, e2))
14 flag=true }}
15 return N.T

5.1 Determine the Transition Relationship

In this section, the method for extracting model behavior
based on the unfolding net is introduced in detail. First,
some relevant information can be easily obtained from
the branch process.

The specific information required is shown in Table 1. It

Process Model Repository

Sensing Research & developmentProduct design Production equipment

Process Model

Process tree

Partial Relationships Matrix

Ranking

Interface

A C

B D

GF

E

Multiple activities in smart manufacturing for Industry 4.0

Process Engineer Cyber-Physical Space

St
or

e

Se
ar

ch

Process Query

Language

Index

Storage Layer

Parsing

Index Generation Query Processing

Index
Similarity
Evaluation

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3348294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Yunnan University. Downloaded on January 24,2024 at 18:32:46 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

includes two two-dimensional arrays, CM and oRM; and
two one-dimensional arrays, corr and h. CM represents
the configuration relationship between events. For exam-
ple, CM[F][A]=✓ indicates that the configuration of F con-
tains A. oRM represents the relationship between events
in the occurrence net.

The above information can determine the transition re-
lationships in the business process model. The following
four conditions are provided for determining the behavior.

Let N=(P, T; F, M0) be a business process; Π=(o,h) be a
branch process corresponding to N, where o=(B, E; F') is an
occurrence net; and h be a homomorphism, where e1, e2

∈E, t1, t2∈T, h(e1)=t1, and h(e2)=t2.

Definition 8. Sequence judgment condition. e1 and e2 sat-
isfy the following conditions for a sequence relationship

between t1 and t2, which is denoted by →(t1, t2):
⚫oRM[e1][e2]=<: the relationship between e1 and e2 is

e1<e2.

⚫For every e∈E and e≠e1⋀e≠e2,
(1) CM[e1][e]=CM[e2][e] and CM[e][e1]=CM[e][e2];

(2) when h(e)=h(e2), CM[e1][e]≠✓ and h(··e)=h(e1)
must hold; and

(3) when corr(e)=e1, either h(e)≠h(e1) or oRM[e][e2]≠

<, or the presence of e∈E and e≠e1⋀e≠e2 makes
CM[e][e']≠CM[e2][e'].

Definition 9. Parallel judgment condition. e1 and e2 satisfy
the following conditions for a parallel relationship be-

tween t1 and t2, which is denoted by ⋀(t1, t2) or ⋀(t2, t1):
⚫oRM[e1][e2]= co: the relationship between e1 and e2

is e1 co e2.

⚫For every e∈E and e≠e1⋀e≠e2,

(1) CM[e1][e]=CM[e2][e] and CM[e][e1]=CM[e][e2]; (2)
when h(e)=h(e1), CM[e2][e]=✓ must hold; and
(3) when h(e)=h(e2), CM[e1][e]=✓ must hold.

Definition 10. Choice judgment condition. e1 and e2 sat-
isfy the following conditions for a choice relationship
between t1 and t2, which is denoted by ×(t1, t2) or ×(t2,
t1):
⚫oRM[e1][e2]=#: the relationship between e1 and e2 is

e1#e2.

⚫For every e∈E and e≠e1⋀e≠e2, CM[e1][e]=CM[e2][e].
⚫corr(e1)=e2 or corr(e2)=e1: an event cuts off the other

event.

Definition 11. Loop judgment condition. e1 and e2 satisfy
the following conditions for a loop relationship be-
tween t1 and t2. If t1 is executed first, it is denoted by

↻(t1, t2). If t2 is executed first, it is denoted by ↻(t2, t1):

⚫oRM[corr(e2)][e1]=< and oRM[e1][e2]=<.

⚫For every e∈E and e≠e1⋀e≠e2, CM[e1][e]=CM[e2][e] .

⚫For every e∈E and e≠e1⋀e≠corr(e2),
CM[e1][e]=CM[corr(e2)][e].
⚫If h(e2)≠h(corr(e2)), there is a loop relationship be-

tween t2 and t1, and t1 is executed first. If
h(e2)=h(corr(e2)), there is also a loop relationship be-
tween t2 and t1, but t2 is executed first.

Table 1 shows all the event information of the unfolding
instance P' in Fig.2. From the information in Table 1 and
the above four relationship judgment methods, the four

relationships ×(A, B), ×(C, D), ×(E, F) and →(K, J) can be
extracted from Fig.1. Using the above four relationship
judgment methods, Algorithm 2 provides the pseudocode
of the ExtractRelation() algorithm for generating RM.

Algorithm 2. ExtractRelation

Input: a model N=(P, T; F, M0), Π=(o,h)
Output: RM
1 get an branching processes Π=(o,h) with p
2 E=o.E, get corr, h, oRM, CM form Π
3 RM=[len(p.T)][len(p.T)]

4 foreach (e1∈E){

5 foreach (e2∈E and e1!=e2){

6 if isSequnence(e1, e2) {
7 RM[h(e1)][h(e2)].add(→(h(e1), h(e2))) }
8 if isIteration(e1, e2) {

10 RM[h(e1)][h(e2)].add(↻(h(e1), h(e2))) }

11 if isChoice(e1, e2) {
12 RM[h(e1)][h(e2)].add(×(h(e1), h(e2))) }
13 if isConcurrency(e1, e2) {

14 RM[h(e1)][h(e2)].add(⋀(h(e1), h(e2))) } }}

15 return RM
5.2 Select and Merge the Transition Relationships

Next, it is necessary to select mergeable relationships,

TABLE 1
INFORMATION ABOUT THE UNFOLDING IN FIG.1

o.T
CM oRM

corr h
A B C D E F G H I J K A B C D E F G H I J K

A ✓ < < < < < < < < < < A
B ✓ ✓ > # # < # # # # # # B
C ✓ ✓ > # < # < < < < < < C
D ✓ ✓ ✓ ✓ > # > # # < # # # # D
E ✓ ✓ ✓ > > # # # # # # # # F E
F ✓ ✓ ✓ > # > # # < < < < < F
G ✓ ✓ ✓ ✓ ✓ > # > > # > # # # # F G
H ✓ ✓ ✓ ✓ > # > # # > # # < # H
I ✓ ✓ ✓ ✓ > # > # # > # # # < I
J ✓ ✓ ✓ ✓ ✓ > # > # # > # > # # J
K ✓ ✓ ✓ ✓ ✓ > # > # # > # # > # K

CM[x][y] indicates that the configuration of x contains y. "<," "#," and "co" can be found in Definition 3, and the symbol ">" represents inverse "<." corr
denotes the cut-off events. h is a homomorphism of the branching processes.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3348294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Yunnan University. Downloaded on January 24,2024 at 18:32:46 UTC from IEEE Xplore. Restrictions apply.

AUTHOR ET AL.: TITLE 7

which satisfy the condition that they will not affect other
relationships after reconstruction. The relationships ex-
tracted above are determined according to events in the
branching process. Definition 12 is as follows.

Definition 12. Combinable relationship judgment condi-
tion. When ⨀(t1, t2) satisfies the following conditions,
the relationship between t1 and t2 can be combined.

For any ⨀'(t1', t2')∈RM and {t1, t2}∩{t1', t2'}≠Φ:
(1)⨀ only represents one relationship;

(2)⨀=→ when ⨀'=→;

(3)⨀=× when ⨀'=× or ⨀'=⋀;

(4)⨀=⋀ when ⨀'=⋀; and

(5)⨀=↻ when ⨀'≠↻or t1'≠t2⋀t1≠t2'.
Merging iterative relations merges the flow relations in

different directions into one place, which easily affects
other transition relations. Therefore, iterative relations
are not merged when there are other mergeable relations.
Algorithm 3 is the transition relation algorithm GetRList()
for selecting and merging.

Algorithm 3. GetRList

Input: a behavior matrix RM
Output: RL
1 tRL= {} lRL= {} RL= {}
2 for (i=0; i <RM.size; i++) {
3 for (j=0 ; j<RM.size; j++) {
4 if (i≠j and len(RM[i][j].⨀)≠0) {
5 tRL.add(RM[i][j]) } }}

6 foreach (⨀(t1, t2)∈RM){

7 Falg=len(⨀)==1

8 if (!falg) foreach (⨀'(t1', t2')∈tR){

9 if ({t1, t2}∩{t1', t2'}≠Ø) {

10 if(⨀==→) {
11 if(⨀'!=→){flag=false, break}}
12 else if(⨀==×) {

13 if(⨀'==→ or ⨀'==↻) {

14 flag=false, break}}

15 else if(⨀==↻) {

16 if(⨀'!=↻ or t1'==t2 or t1==t2') {

17 flag=false, break}}

18 else if(⨀==⋀) {

19 if(⨀'!=⋀) {flag=false, break}} }}

20 if falg (

21 if(⨀==↻) {lRL.add(⨀(t1, t2))}

22 else {RL.add(⨀(t1, t2))}
23 if(lRL.size > 0) {return RL}
24 return lRL

The basic idea of merging transition relationships is
shown in Fig.4: delete the original two transitions and add
a new transition. Simultaneously, selectively make the
new transition inherit parts of the arcs of the old transi-
tions.

The retained arcs are indicated by the blue and red flow
relationships in Fig.4, where red indicates the arcs

pointing to the new transition and blue indicates the arcs
starting from the new transition. The retained arcs can be
divided into two types according to the transition relation-
ship:

(1) The relationship is not a loop relationship. At this
time, after excluding the conditions that need to be de-
leted, the new transition inherits the arcs of the two old
transitions.

(2) The relationship is a loop relationship, which allows
the new transition to inherit the arcs of the transition that
executed first in the loop relationship (i.e., loop(1) in Fig.4).
However, sometimes, the successor of the first transition
is a condition that needs to be deleted (i.e., loop(2) in
Fig.4). At this time, the new transition a inherits the arcs
that point to the transition a1 that executed first in the
loop relationship, and the arcs that starting to the transi-
tion a2 that executed last.

Next, it is necessary to delete some of the conditions
and their associated arcs, including the conditions delC in
Fig.4. The conditions to be deleted can be divided into
three scenarios:

(1) does not belong to the initial modality, but only con-
nects the two old transitions (i.e., the black condition in
Fig.4);

(2) No other transitions are related; that is, both the
preset and postset are empty (may occur after removing
part of the arcs); and

(3) if there are two conditions of the same preset and
the same postset, delete one of them.

Case (1) of the selection of the conditions is likely to
affect the selection of the arcs and needs to be deter-
mined before the arcs are selected. The latter two cases
of the selection of the conditions are affected by the se-
lection of the arcs, and need to be judged after the arcs
are selected.

Refactor() is used to merge transitions, where the se-

lection of arcs corresponds to lines 5–8 of Algorithm 4.
The three scenarios for the deletion conditions corre-
spond to rows 2, 10, and 11–15 of Algorithm 4.

Algorithm 4. Refactor

Input: a model N=(P, T; F, M0), ⨀(t1, t2)
Output: a model N=(P, T; F, M0)
1 newt=⨀(t1, t2), delT={t1, t2}

Sequence

a1 a2

a1

a2

a1

a2

Choice

a1

a2

Consolidate

Parallel

Loop2

a

delC

a1

a2

delC

Loop1

Fig.4. Schematic of Algorithm 4: Refactor.
Delete the original transitions, add transitions, and selectively make the new
transitions inherit parts of the arcs of the original transitions. Red represents
arcs to be retained that point to a new transition, and blue represents arcs to
be retained that start from a new transition.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3348294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Yunnan University. Downloaded on January 24,2024 at 18:32:46 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

2 delP={p|p∈N.P-N.M0 and ·p∩p·⊆delT}

3
delF={e1×e2|e1×e2∈N.F and {e1, e2}∩(delT∪

delP) hØ}
4 if (⨀==↻)

5
F'=N.F – delF+{p×newt|p∈(·t1-delP)}

+{newt×p|p∈((t1·⊆delP?t2·:t1·)-delP)}
6 else

7

F' =N.F – delF+{newt×p|p∈((t1·∪t2·)

–(·t1∪·t2) –delP)}+{p×newt|p∈((·t1

∪·t2)-(t1·∪t2·)-delP)}
 P'=N.P'-delP, M0'=N.M0
9 foreach (p∈P'){

10 if (·p==Ø and p·==Ø) {P'=P'-p}
11 else foreach (p'∈P' and p≠p'){

12
if(p∈M0 XNOR p'∈M0 and ·p=·p' and
 p·=p]·){

13 F'={e1×e2|e1×e2∈F' and {e1, e2}∩{p}=Ø}

14 if(p∈M0) {M0'=M0'-{p}}
15 P'=P'-{p}, break }}}
16 return N'=(P', N.T+{newt}-delT; F', M0')

5.3 Partial Relationship Matrix Generation

The model N2 in Fig.5 has no corresponding behavior-

equivalent process tree. Because there are ⋀(d, e), ⋀(b, c),

⋀(b, c), →(b, d), →(b, e), and →(c, e) in N2. The transitions

b, e, c form →(⋀(b, c), e). When d is going to join →(⋀(b,

c), e), then it forms →(⋀(b, c), ⋀(d, e)) or →(⋀(→(b, d), c),
e). The former causes the relationship between c and d to
change from parallel to sequential, and the latter causes
the relationship between d and e to change from parallel
to sequential. Both combinations are wrong. In fact, no
combination can produce a behavior-equivalent process
tree of N2.

Therefore, how to select the "appropriate" complex
structure for PRMGeneration() is the problem to be solved
in this section.

The basic steps of the algorithm PRMGeneration() are
described in detail as follows and illustrated by the pro-
cess model N2 in Fig.5:

Let Π=(o,h) be a branch process corresponding to N2=(P,
T; F, M0), where o=(B, E; F') is an occurrence net; h be a
homomorphism; CM represent the configuration relation-
ship between events from Π; and corr denote the cut-off
event.

a b

c

f

d

e

N2:

Fig.5. Example of process model N2 containing a complex structure.

(1) Construct the binary matrix CM'. The matrix CM'
is constructed from CM and the homomorphism h. For

every e1, e2∈E, CM'[h(e1)][h(e2)]=CM'[h(e1)][h(e2)]|

CM[e2][e1]. The CM' of N2 is shown in Table 2.
(2) Construct the binary matrix hCM'. The binary ma-

trix CM' is constructed from CM' and corr. Let hCM'= CM',

and for any corr(e1)=e2 and ∀e∈E, let

hCM'[e][e1]=hCM'[e][e1]|hCM'[e][e2]. There is no cut-off
event in N2; hence, hCM' of N2 is the same as CM'.

TABLE 2
CM' IN FIG.5

o.T
CM'

a b c d e f

a ✓

b ✓ ✓

c ✓ ✓

d ✓ ✓ ✓

e ✓ ✓ ✓ ✓
f ✓ ✓ ✓ ✓ ✓ ✓

(3) The global relation is extracted to construct the

relation matrix pRM. The relationship between t1, t2∈

T⋀t1≠t2 is judged using a quadratic nested cycle. First,
pRM=RM is set to reduce the number of judgments. The
judgment method of the remaining transition relationship
is as follows:

I. When hCM'[t1][t2]=✓ and hCM'[t2][t1]=✓, ↻(t1, t2).

II. When hCM'[t1][t2]=✓ and hCM'[t2][t1]≠✓, →(t1, t2).
III. When hCM'[t1][t2]≠✓ and hCM'[t2][t1]≠✓, transition

set Ts={t|t∈T and CM'[t][t2]|CM'[t][t1]}, and condi-

tions set C=(Min(o)∪Ts·)\·Ts are constructed. The cal-
culation method of C is similar to that in Definition 6. If

any C[{t1, t2}>, then ⋀(t1, t2); otherwise, ×(t1, t2).

(4) Retain transitions that form a complex structure

in pRM. When t1∈T is removed from pRM, t1 has the

same relationships with any t2∈T⋀t1≠t2. Loop to check

whether the transitions in pRM can be removed, until
any transitions does not satisfy the removal condition.

(5) Refactor the behavior. Use Refactor() to refactor
the transition relationships in pRM.

Finally, through the above basic steps of the algorithm
PRMGeneration(), the index of process model N2 is ob-
tained as Fig.6.

a f

Fig.6. Index of process model N2.

6 QUERY PROCESSING

After the index for the business process is built, the next
step is how to query using the index. The process tree is
used as the index; hence, the similarity between the pro-
cess trees needs to be measured.
6.1 Process Tree Edit Distance

The tree edit distance is mainly inspired by the traditional
concept of the string editing distance. The definition of

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3348294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Yunnan University. Downloaded on January 24,2024 at 18:32:46 UTC from IEEE Xplore. Restrictions apply.

AUTHOR ET AL.: TITLE 9

the process tree edit distance is as follows:

Definition 12. Process tree edit distance. The edit dis-
tance between process trees t1 and t2 is expressed as
δ(t1, t2), where δ(t1, t2) denotes the sum of the mini-
mum overhead of the basic operations required to con-
vert t1 and t2 into the same process tree.

The basic operation[59] does not distinguish leaf nodes
and non-leaf nodes. The cost of deleting node T is denoted
by Del(T), and the cost of modifying the relationship be-
tween nodes t1 and t2 is denoted by Rel(t1, t2).

A process tree is different from a tree in that branch
nodes represent the relationships between transitions
(leaf nodes). Hence, the deleting node is set only for leaf
nodes and the modifying node is set only for branch nodes.

For example, once the node ⋀(a, b) is deleted, and the

nodes a and b will be removed. Only the⋀operation sym-

bol does not make any sense. Similarly, only deleting node

a, then get node ⋀(b),⋀also does not make sense.
Therefore, the deleting node is set as an operation on

the leaf nodes.
Calculating the edit distance for t1=→(a, ×(b, c), d) and

t2=→(a, ⋀(b, c), d) requires modifying node x(b, c) in t1 or

node ⋀(b, c) in t2. The two nodes are included in b and c.

Deleting ×(b, c) and adding ⋀(b, c)is not reasonable. Thus,
modifying nodes is an operation on the branch nodes (re-
lationship). Additionally, modifying the amendment of ×(b,

c) to ⋀(b, c) is equivalent to modifying the relationship be-
tween b and c.

The traditional tree edit distance calculation adopts a
type of dynamic recursion[59]. However, combined with
the characteristics of the process tree, it does not need
dynamic recursion to calculate the edit distance. Based on
Definition 12, the calculation of the process trees' edit dis-
tance requires only two components: the cost of the tran-
sitions that need to be removed and the cost of the tran-
sition relationships that need to be modified.

g

||

h

i

d

||

×

a

f

b

c

||

e

g

||

h

j

d

||

×

a

f

b

c

||

e

i

t1: t2:

Fig.7. Example of the process trees' edit distance.

The operation overhead of deleting a leaf node t is de-
noted by Del(t)=p, and the overhead of modifying the re-
lationship between node t1 and t2 is denoted by Rel(t1,
t2)=q. The calculation method for the process trees' edit
distance is refined into the following three steps, and t1
and t2 in Fig.7 are taken as examples to illustrate it:

(1) Retain={t|t∈leaves(t1) and t∈leaves(t2)}, where
leaves(t1) represents all the leaf nodes of t1. Retain is the
nodes to be reserved in process trees t1 and t2. In Fig.7,

Retain={a, b, c, d, e, f, g, h, I).
(2) Calculate the cost of deleting nodes. In t1 and t2,

the cost of deleting nodes is p×(|leaves(t1)|+|leaves(t2)|-
2×|Retain|). However, it is not necessary to delete the
nodes in t1 and t2 because they will not affect subsequent
operations.

(3) Rel={(x,y)|⨀(x,y)∈t1⋀⨀'(x,y)∈t2⋀⨀≠⨀'}. Rel is
the branch nodes to be modify in process trees t1 and t2.
In Fig.7, Rel={(a, h), (c, h), (e, h), (b, g), (d, g), (f, g), (g, h)},
and the cost of modifying the branch nodes is q×|Rel|. In
the actual calculation, it is not necessary to calculate the
specific matrix, and the transition relationship can be ob-
tained by tracing the nearest common parent node be-
tween leaf nodes.
6.2 Process Model Query

The similarity between the process trees is calculated us-
ing the process tree edit distance. The definition of pro-
cess tree similarity is provided in the following.

Definition 13. Union set value. For process trees t1 and t2,
let the cost of deleting node a be denoted by Del(a)=p,
and the cost of modifying the relationship between
node a1 and a2 be denoted by Rel(a1, a1)=q. Then the
union set value between t1 and t2 is

2

(,
()

) ((,) 1)

2

1 1

1 1

2 2

2

t tRetain Retain t
t t q

t
t t p

−

= + + . (1)

Definition 14. Process tree similarity. The similarity be-
tween process trees t1 and t2 is

() ()1 2 1 2 1 2
(

,
,) 1

,2

2

2 2 2

1

1

1 1 1

t t
simTree t t

t t t t t

t t t t t t

t

= −

−
=

= . (2)

Two process trees are presented, as shown in Fig.8. The
similarity of the model is measured. The similarity be-
tween t1 and t2 process trees is measured by setting q=1
and p=1, and simTree(t1, t2) =0.8 is obtained.

Using Definition 6, a process model retrieval method
based on process tree similarity measurement is pro-
posed. The pseudocode is shown in Algorithm 5. The input
retrieval condition QC can be a process model or process
tree.

A B

×

C D

E F

×

G

H

 I

A B

×

C D

×

E F

× G

H

K J

 I

 P1: P2:

K J
Fig.8. Process trees.

Algorithm 5. Similarity calculation for the pro-
cess model

Input: The retrieval condition QC, process model
set to be retrieved NS, and index set TS
Output: a behavior list lRL
1 if (qc is not tree)
2 get a process tree t from qc

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3348294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Yunnan University. Downloaded on January 24,2024 at 18:32:46 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

3 else t=qc
4 t=standardize(t)
5 rTS=[]

6 foreach (t'∈TS)

7 similarity=simTree(t, t')
8 if (similarity > 0)
9 Insert t' into rTS with similarity
10 return rTS

7 EVALUATION

The main aim of the experiment for process model re-
trieval is to analyze its feasibility and efficiency.

In this section, the detailed process model retrieval
case is analyzed to verify the feasibility of index genera-
tion. Then, the retrieval efficiency of the query process is
analyzed. Finally, the performance of Algorithm 5 is evalu-
ated.

The authors uploaded the experimental data and source
code for this algorithm to GitHub1. Using the method in this
study, a prototype system was developed2. Notably, the ex-
perimental data utilised in this paper have passed our tests
to ensure that they are free of noise interference.

7.1 Experiment Datasets

The experimental datasets used to evaluate the perfor-
mance of the algorithms are divided into three groups:

(1) AP group: 10,000 randomly and automatically gen-
erated models were recorded using PLG[60]. These PLG-
generated models contain four basic structures, that is,
sequence, selection, concurrency, and iteration, and their
node labels are composed of character numbers.

(2) BP group: 1,000 process models proposed by Poly-
vyanyy et al.[61]. These models contain not only the four
basic structures, but also some complex non-TEPM struc-
tures.

(3) CP group: This repository contains the hand-drawn
BPMN dataset published in [62]. 651 representative real-
life process models were contained. This group contains
BSPM models, TEPM models with complex structures, and
non-TEPM models.

(4) DP group: 20 representative artificially constructed
process models. This group contains BSPM models, TEPM
models with complex structures, and non-TEPM models.
Specific models can be found in Table 5.

TABLE 3
EXPERIMENTAL DATASETS

 counts pmin pmax psum tmin tmax tsum fmin fmax fsum

AP 10000 7 28 133184 6 29 126633 12 66 287088
BP 1000 5 84 13516 5 86 16631 10 84 32398
CP 651 7 62 13839 7 54 13410 11 62 28151
DP 20 5 15 155 5 16 173 14 15 424

pmin, pmax, and pavg denote the minimum, maximum, and average num-
bers of places of models in the dataset. tmin, tmax, and tavg denote the min-
imum, maximum, and average numbers of transitions of models in the da-
taset. fmin, fmax, and favg denote the minimum, maximum, and average

1https://github.com/zhu-rui/Process-model-repository

numbers of arcs of models in the dataset.

Table 3 shows the specific conditions of the experi-
mental data: counts represents the total number of mod-
els in the dataset.

7.2 Correctness Verification of Index Generation

To verify the correctness of index generation in trans-
forming a complex structure, DP experimental data were
used for analysis. The 20 process models in the DP
group,as shown in Table 4, can be divided into three types:

(1) The models were obtained using random superpo-
sition and a combination of sequence, parallel, choice,
and loop. The models correspond to the process models
numbered 1–7. These models are TEPM models, and in-
clude some BSPM models.

(2) By modifying some classic process model cases (e.g.,
courier protocol, accurate colored, and colored reader
writer), the obtained process models correspond to the
process models numbered 8–15, which are TEPM models
with complex structures.

(3) Representative non-TEPM models were selected as
BP group data, and the simple BSPM structure in these
models was deleted to reduce the scale of the model and
make it easy to analyze. The models correspond to the
process models numbered 16–20.

Table 5 shows that the algorithm presented in this
study has advantages over other methods regarding deal-
ing with TEPM models with complex structures, and bet-
ter preserves model behavior. Table 5 compares the pro-
posed Algorithm 1 with [53, 54] in the dataset DP. The [63]
converts BSPMs into behavioral-equivalent process trees
by identifying basic blocks, but cannot handle non-BSPMs.
The [53, 54] convert all models into process trees, but gen-
eralize non-BSPM to flower models. The [64] does not
generate process trees, but can convert non-BSPMs to
BSPMs, and then obtain the corresponding process tree
by identifying the basic block. However, this method can-
not be applied to the loop structure. To sum up, the exist-
ing methods cannot convert the models in Table 5 into be-
havioral-equivalent process trees.

7.3 Indexing Efficiency Analysis

Before the performance of the process model index build-
ing algorithm is analyzed, the time complexity of Algo-
rithm 1 is analyzed. The time complexity of Generation-
OfTheProcessTree() is determined using the complexity of
the complete finite prefix unfolding, complexity of Extrac-
tRelation(), complexity of Refactor(), and number of itera-
tions (process tree depth).

First, consider the complexity of the algorithm in the
worst case. The complete finite prefix unfolding algorithm
is O(|T|∙R𝜉) in the worst case, where |T| is the number of
transitions in the model, R is the number of non-

2http://47.110.142.51:8080/ProcessModel/

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3348294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Yunnan University. Downloaded on January 24,2024 at 18:32:46 UTC from IEEE Xplore. Restrictions apply.

AUTHOR ET AL.: TITLE 11

truncation conditions in the unfolding network, and 𝜉 is
the maximum number of transitions in the outflow and
entry.

Compute the complexity of the active relationship Ex-
tractRelation() to O(|E|3), where|E| is the number of
events in the expanded network. The complexity of Refac-
tor() is O(|loopRL|4), where |loopRL| is the number of
transitions contained in a complex structure that needs to
be generalized. Therefore, the time complexity of the pro-
cess model index building algorithm is at worst
O(h(|A|∙R𝜉+|E|3+|loopRL|4)), where h is the depth of the
process tree.

Therefore, generally, the time complexity of the pro-
cess model index building algorithm is determined by the
complexity of ExtractRelation() and number of iterations
(depth of process tree). Hence, typically, the time com-
plexity of GenerationOfTheProcessTree() is O(|T|3∙h).

Next, the performance of the index building algorithm
is analyzed. Figs. 9, 10 and 11 show time curves for da-
tasets AP, BP and CP. The horizontal axis is the number of
simplified models and the vertical axis is the time spent.
The models in dataset AP are BSPMs, and some of the
models in dataset BP contain complex structures. The
time-varying curve of dataset BP is more uneven. There-
fore, in most cases, complex structures are more time-
consuming and unstable.

7.4 Retrieval Efficiency Analysis

The time complexity of the calculation of the process tree
similarity is determined by the complexity of the nodes to
be deleted and the behavior to be modified.

The complexity of deleting behavior is
O(|leaves(t1)|×|leaves(t2)|). The complexity of modifying
behavior is O(max(depth(t1), depth(t2))×|Retain(t1,t2)|2),

where leaves(t1) represents all the leaf nodes of t1,
depth(t1) is the depth of process tree t1.

Thus, the time complexity of the process tree similarity
calculation is O(|leaves(t1)|×|leaves(t2)|+max(depth (t1),
depth(t2))×|Retain(t1,t2)|2). The worst time complexity of
the process tree similarity calculation is O(max(depth(t1),
depth(t2))×|Retain(t1, t2)|2), which occurs when leaves(t1)
is identical to leaves(t2). The best time complexity is
O(|leaves(t1)|×|leaves(t2)|), which occurs when the leaf
nodes of two trees are totally different or have low simi-
larity.

Fig.9. Indexing time statistics on AP.

Fig.10. Indexing time statistics on BP.

Fig.11. Indexing time statistics on CP

To test the performance of the retrieval algorithm on
AP, six different query conditions (labeled AQ1–AQ6) were
constructed. AQ1 contained 10 transitions, and each sub-
sequent query condition had 10 more transitions than the
previous one. The query conditions AQ1–AQ6 were com-
bined with AP group models of different sizes (100–1,000)
for the query. The reponse time statistics are shown in
Fig.12, and the retrieval time is in milliseconds.

To test the performance of the retrieval algorithm on
BP and CP, six different query conditions (labeled BQ1–
BQ6 and CQ1-CQ6) were also constructed, respectively.
The number of transitions in BQ1–BQ6 and CQ1-CQ6 were

TABLE 4 (REFER TO SUPPLEMENTAL FILE)
20 EXPERIMENTAL CASES IN THE DP DATASETS

TABLE 5
RESEARCH ON PROCESS MODEL RETRIEVAL

NUM
WHETHER TO CONVERT WHETHER TO LOSE BEHAVIORAL

WHETHER TO GENERALIZE TO A

FLOWER MODEL
WHETHER TO GENERALIZE TO A BLOCK

STRUCTURE
WHETHER TO HANDLE LOOP

OUR [63] [53, 54] [64] OUR [63] [53, 54] [64] OUR [63] [53, 54] [64] OUR [63] [53, 54] [64] OUR [63] [53, 54] [64]

1 ✓ ✓ ✓ ⊥ ⊥ ⊥ ✓ ✓ ✓ ⊥
2 ✓ ✓ ✓ ⊥ ✓ ⊥ ✓ ⊥ ✓ ⊘ ⊘ ⊘ ⊘
3 ✓ ✓ ⊥ ✓ ⊥ ⊥ ✓ ⊥ ⊥ ⊥ ✓ ⊥ ✓ ⊥
4 ✓ ✓ ✓ ⊥ ⊥ ⊥ ✓ ✓ ✓ ⊥
5 ✓ ✓ ⊥ ✓ ⊥ ⊥ ✓ ⊥ ⊥ ⊥ ✓ ⊥ ✓ ⊥
6 ✓ ✓ ⊥ ✓ ⊥ ⊥ ✓ ⊥ ⊥ ⊥ ✓ ⊥ ✓ ⊥
7 ✓ ✓ ⊥ ✓ ⊥ ⊥ ✓ ⊥ ⊥ ⊥ ✓ ⊥ ✓ ⊥
8 ✓ ✓ ⊥ ✓ ⊥ ⊥ ✓ ⊥ ⊥ ⊥ ✓ ⊥ ✓ ⊥
9 ✓ ✓ ✓ ⊥ ✓ ⊥ ✓ ⊥ ✓ ⊘ ⊘ ⊘ ⊘

10 ✓ ✓ ⊥ ✓ ⊥ ⊥ ✓ ⊥ ⊥ ⊥ ✓ ⊥ ✓ ⊥
11 ✓ ✓ ✓ ⊥ ✓ ⊥ ✓ ⊥ ✓ ⊘ ⊘ ⊘ ⊘
12 ✓ ✓ ⊥ ✓ ⊥ ⊥ ✓ ⊥ ⊥ ⊥ ✓ ⊥ ✓ ⊥
13 ✓ ✓ ⊥ ✓ ⊥ ⊥ ✓ ⊥ ⊥ ⊥ ✓ ⊥ ✓ ⊥
14 ✓ ✓ ⊥ ✓ ⊥ ⊥ ✓ ⊥ ⊥ ⊥ ✓ ⊥ ✓ ⊥
15 ✓ ✓ ⊥ ✓ ⊥ ⊥ ✓ ⊥ ⊥ ⊥ ✓ ⊥ ✓ ⊥
16 ✓ ✓ ✓ ⊥ ✓ ⊥ ✓ ⊥ ✓ ⊘ ⊘ ⊘ ⊘
17 ✓ ✓ ✓ ⊥ ✓ ⊥ ✓ ⊥ ✓ ⊘ ⊘ ⊘ ⊘
18 ✓ ✓ ✓ ⊥ ✓ ⊥ ✓ ⊥ ✓ ⊘ ⊘ ⊘ ⊘
19 ✓ ✓ ✓ ⊥ ✓ ⊥ ✓ ⊥ ✓ ⊘ ⊘ ⊘ ⊘
20 ✓ ✓ ✓ ⊥ ✓ ⊥ ✓ ⊥ ✓ ⊘ ⊘ ⊘ ⊘

"✓" and "" represent "yes" and "no." "⊥" indicates that the case cannot be converted and there are no other values. "⊘"indicates that there is no loop structure
in the case.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3348294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Yunnan University. Downloaded on January 24,2024 at 18:32:46 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

the same as that in AQ1–AQ6; however, the transition la-
bels were different. The transition labels in AQ1–AQ6
were characters, whereas those in BQ1–BQ6 and CQ1-
CQ6 were phrases. The time curve statistics for dataset BP
are shown in Fig.13, and for dataset CP are shown in Fig.14.

Fig.12. Reponse time statistics for AP.

Fig.13. Reponse time statistics for BP.

Fig.14. Reponse time statistics for CP.

Fig.15: Retrieval time statistics for different levels of transition repeti-
tion on the BP datasets.

The reponse time of the method proposed by Poly-
vyanyy et al.[61] was in seconds on dataset BP. The algo-
rithm was much faster than [61] in milliseconds on dataset
BP. Similar, our approach was much faster on data [62].

The transition repetition rate among different models
in dataset AP was high, whereas the transition repetition
rate among different models in dataset BP and CP was low.
Therefore, the retrieval time of dataset BP and CP was al-
most one-tenth of dataset AP.

There were 13,516 transitions in dataset BP, including

duplicate name transitions and tau transitions[72], and
10,474 normal transitions. In order to process the syno-
nyms, the [73] use Word2vec to standardize synonyms in
the BP group. Comparing the similarity between two tran-
sitions using Word2vec, can get a number between 0 and
1. The closer to 1, the higher the similarity between two
transitions. Using the same way to handle CP dataset, the
result of reponse time on the three dataset are shown in
Table 7. Our research findings indicate that our proposed
method exhibits significantly improved response time
than [61] on datasets AP, BP, and CP.

TABLE 7
QUANTITATIVE COMPARISON ON RESPONSE TIME

AP BP CP
Our [61] Our [61] Our [61]

Q1 14.4866 46.876 1.3773 3.537 1.4034 3.7028

Q2 18.087 66.396 1.4031 3.9151 1.8718 4.2487
Q3 23.815 76.104 1.5387 4.4812 2.1643 4.5554

Q4 26.0554 82.913 1.711 4.8221 2.3705 5.2504

Q5 28.9556 93.596 1.8243 5.5011 2.4413 5.901
Q6 29.9889 101.695 1.9584 5.923 2.456 6.4924

The focus of this study is the structure and behavior of
the model, not including tag semantics. The similarity
thresholds were set to 1, 0.9, 0.8, 0.7, 0.6, and 0.5. If the
values of similarity higher than this threshold, the syno-
nyms were replaced. When the similarity thresholds were
set to 1, the synonyms were not replaced. The final six
similarity thresholds corresponded to 10,474, 9760, 4683,
2869, 949, and 351 transitions without duplicate name
transitions and tau nodes. The retrieving time statistics for
different levels of transition repetition are shown in Fig.15.
The results show that the higher the transition repetition,
the longer it took to retrieve models.

7.5 Compared with Existing Methods

The method was compared with other business process
retrieval algorithms, and the results are shown in Table 6.

In Table 6, the "Types" are divided into "Structure" and
"Behavior," which refer to the search types of the search
algorithms.

The "Ranges" is divided into four types: "Overall struc-
ture" refers to whether the overall structure of the model
can be directly input to retrieve the model; "Overall

TABLE 6
COMPARISON OF THE RETRIEVAL CAPABILITIES OF EXISTING METHODS

Paper Index to describe Querying technique

Types Ranges Index descriptions

S
tru

c
tu

re

B
e

h
a
v
io

r

O
v
e
ra

ll s
tru

c
tu

re

O
v
e
ra

ll b
e

h
a

v
io

r

E
a

c
h

 b
e

h
a
v
io

r

L
o

o
p
 s

tru
c
tu

re

G
ra

p
h

ic
s

M
a

trix

T
e
x
t

[65] Tasks are next to the relationship tree Graph edit distance for semantic workflow ✓ ✓ ✓ ✓ ✓

[66] Complete trigger sequence A* Search algorithm ✓ ✓ ✓ ✓ ✓

[67] Behavioral feature Filter- verification ✓ ✓ ✓ ✓ ✓

[68] Behavioral feature set Direct retrieval of behavioral characteristics ✓ ✓ ✓ ✓ ✓

[40] ORTP Index Time and probability constrained retrieval ✓ ✓ ✓ ✓

[69] Process Graph Graph matching ✓ ✓ ✓ ✓

[70] Process Graph Graph matching ✓ ✓ ✓ ✓

[71] EPC Graph matching ✓ ✓ ✓ ✓

Ours Process tree Process tree Edit distance ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3348294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Yunnan University. Downloaded on January 24,2024 at 18:32:46 UTC from IEEE Xplore. Restrictions apply.

AUTHOR ET AL.: TITLE 13

behavior" refers to whether the overall behavior of the
model can be directly input for retrieval; "Each behavior"
refers to whether the behavior between transitions can be
directly input for retrieval; and "Loop structure" refers to
whether the loop structure can be retrieved.

"Index descriptions" can be divided into three types,
that is, "Graphics," "Matrix," and "Text," which refer to the
index structure of the expression. "Graphics" refers to the
index to be rendered in the form of graphics; "Matrix" re-
fers the index to be rendered in the form of a matrix, and
is not required in the form of the matrix storage model;
and "Text" means that the index can be presented as text,
and that the text can express the index information di-
rectly.

In terms of the retrieval scope, the methods [65-67] in
Table 6 need to input a model or model fragment during
retrieval instead of directly inputting behavior for retrieval.

The methods[40, 68] directly store transition behavior;
hence, the overall behavior of the model can be retrieved,
but they do not directly input the model to retrieve mod-
els with a similar structure. The methods [69-71] are
graph retrieval approaches, and cannot be retrieved by
behavior. The process tree not only contains the behaviors
between transitions, but also the control flow pattern
contained[74], in which the structural characteristics of
the model are implied. Therefore, the retrieval method
can combine behavior and structure simultaneously.

8 CONCLUSION

In this study, a behavior-based retrieval method for a busi-
ness process model repository was proposed. First, the
approach uses a process tree as the index of the business
process model. Second, the similarity between different
models is calculated by measuring the similarity between
indices.

The behavior-based business data retrieval method
proposed has certain promising applications and practical
significance. However, there are still many areas to be im-
proved in this research. For example, business database
retrieval in the present study is only integrated from a be-
havioral perspective and is not sufficiently comprehensive.
Only four types of relationships between transitions are
considered. In follow-up research, the characteristics of
business processes will be analyzed in a more comprehen-
sive and detailed manner, and a more efficient retrieval
method will be established.

REFERENCES

[1] M. L. Rosa et al., "APROMORE: An advanced process model
repository," Expert Systems with Applications, vol. 38, no. 6, pp. 7029-7040,
2011.
[2] H. Leopold, J. Mendling, H. A. Reijers, and M. L. Rosa, "Simplifying
process model abstraction: Techniques for generating model names,"
Information Systems, vol. 39, no. 1, pp. 134-151, 2014.
[3] M. Dumas, L. García-Bañuelos, M. L. Rosa, and R. Uba, "Fast detection
of exact clones in business process model repositories," Information

Systems, vol. 38, no. 4, pp. 619-633, 2013.
[4] F. Corradini, F. Fornari, A. Polini, B. Re, and F. Tiezzi, "A formal
approach to modeling and verification of business process collaborations,"
Science of Computer Programming, vol. 166, pp. 35-70, 2018.
[5] B. A. Tama and M. Comuzzi, "An empirical comparison of classification
techniques for next event prediction using business process event logs,"
Expert Systems with Applications, vol. 129, pp. 233-245, 2019.
[6] S. Song, Y. Gao, C. Wang, X. Zhu, J. Wang, and S. Y. Philip, "Matching
heterogeneous events with patterns," IEEE Transactions on Knowledge
and Data Engineering, vol. 29, no. 8, pp. 1695-1708, 2017.
[7] Y. Gao, S. Song, X. Zhu, J. Wang, X. Lian, and L. Zou, "Matching
heterogeneous event data," IEEE Transactions on Knowledge and Data
Engineering, vol. 30, no. 11, pp. 2157-2170, 2018.
[8] B. Aysolmaz, H. Leopold, H. A. Reijers, and O. Demirörs, "A semi-
automated approach for generating natural language requirements
documents based on business process models," Information and Software
Technology, vol. 93, pp. 14-29, 2018.
[9] R. S. Veitch and L. F. Seymour, "Measuring Business Process Model
Reuse in a Process Repository," in International Conference on Business
Process Management, 2019: Springer, pp. 733-744.
[10] E. Oztemel and S. Gursev, "Literature review of Industry 4.0 and
related technologies," Journal of Intelligent Manufacturing, vol. 31, no. 1,
pp. 127-182, 2020.
[11] M. Javaid, A. Haleem, R. Vaishya, S. Bahl, R. Suman, and A. Vaish,
"Industry 4.0 technologies and their applications in fighting COVID-19
pandemic," Diabetes & Metabolic Syndrome: Clinical Research & Reviews,
vol. 14, no. 4, pp. 419-422, 2020/07/01/ 2020.
[12] L. S. Dalenogare, G. B. Benitez, N. F. Ayala, and A. G. Frank, "The
expected contribution of Industry 4.0 technologies for industrial
performance," International Journal of Production Economics, vol. 204, pp.
383-394, 2018/10/01/ 2018.
[13] M. Leemans, W. M. Van Der Aalst, M. G. Van Den Brand, R. R.
Schiffelers, and L. Lensink, "Software Process Analysis Methodology–A
Methodology Based on Lessons Learned in Embracing Legacy Software,"
presented at the 2018 IEEE International Conference on Software
Maintenance and Evolution (ICSME), 2018.
[14] J. Wang, T. Jin, R. Wong, and L. Wen, "Querying business process
model repositories: A survey of current approaches and issues," World
Wide Web-internet & Web Information Systems, vol. 17, no. 3, pp. 427-454,
2014.
[15] T. Jin, J. Wang, M. L. Rosa, A. Ter Hofstede, and L. Wen, "Efficient
querying of large process model repositories," Computers in Industry, vol.
64, no. 1, pp. 41-49, 2013.
[16] H. Sneed and C. Verhoef, "Re-implementing a legacy system," Journal
of Systems and Software, vol. 155, pp. 162-184, 2019.
[17] W. Aalst, Process Mining: Data Science in Action. Springer Publishing
Company, Incorporated, 2016.
[18] M. M. Queiroz, S. F. Wamba, M. C. Machado, and R. Telles, "Smart
production systems drivers for business process management
improvement," Business Process Management Journal, 2020.
[19] R. Perez-Castillo, M. Fernandez-Ropero, and M. Piattini, "Business
process model refactoring applying IBUPROFEN. An industrial
evaluation," Journal of Systems and Software, vol. 147, pp. 86-103, 2019.
[20] R. Lombardi, "Knowledge transfer and organizational performance
and business process: past, present and future researches," Business
Process Management Journal, 2019.
[21] H. Kir and N. Erdogan, "A knowledge-intensive adaptive business
process management framework," Information Systems, vol. 95, p. 101639,
2021.
[22] J. Mendling et al., "Blockchains for business process management-
challenges and opportunities," ACM Transactions on Management
Information Systems (TMIS), vol. 9, no. 1, pp. 1-16, 2018.
[23] A. Corallo, M. Lazoi, and M. Lezzi, "Cybersecurity in the context of
industry 4.0: A structured classification of critical assets and business
impacts," Computers in industry, vol. 114, p. 103165, 2020.
[24] W. Viriyasitavat and D. Hoonsopon, "Blockchain characteristics and
consensus in modern business processes," Journal of Industrial
Information Integration, vol. 13, pp. 32-39, 2019.
[25] M. Nardelli, S. Nastic, S. Dustdar, M. Villari, and R. Ranjan, "Osmotic
flow: Osmotic computing+ iot workflow," IEEE Cloud Computing, vol. 4, no.
2, pp. 68-75, 2017.
[26] C. Benghi, "Automated verification for collaborative workflows in a
Digital Plan of Work," Automation in Construction, vol. 107, p. 102926,
2019.
[27] G. Jošt, M. Heričko, and G. Polančič, "Theoretical foundations and
implementation of business process diagrams’ complexity management
technique based on highlights," Software & Systems Modeling, vol. 18, no.
2, pp. 1079-1095, 2019.
[28] A. Polyvyanyy, C. Ouyang, A. Barros, and W. M. van der Aalst,
"Process querying: Enabling business intelligence through query-based

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3348294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Yunnan University. Downloaded on January 24,2024 at 18:32:46 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON JOURNAL NAME, MANUSCRIPT ID

process analytics," Decision Support Systems, vol. 100, pp. 41-56, 2017.
[29] M. Cho, M. Song, M. Comuzzi, and S. Yoo, "Evaluating the effect of
best practices for business process redesign: An evidence-based
approach based on process mining techniques," Decision Support
Systems, vol. 104, pp. 92-103, 2017.
[30] M. AbdEllatif, M. S. Farhan, and N. S. Shehata, "Overcoming business
process reengineering obstacles using ontology-based knowledge map
methodology," Future Computing and Informatics Journal, vol. 3, no. 1, pp.
7-28, 2018.
[31] W. Song, H.-A. Jacobsen, S. Cheung, H. Liu, and X. Ma, "Workflow
refactoring for maximizing concurrency and block-structuredness," IEEE
Transactions on Services Computing, 2018.
[32] Y. Zhang, G. Cui, Z. Shu, and T. Jie, "IFOA4WSC: A quick and effective
algorithm for QoS-aware service composition," International Journal of
Web & Grid Services, vol. 12, no. 1, p. 81, 2016.
[33] M. Leyer, D. Iren, and B. Aysolmaz, "Identification and analysis of
handovers in organisations using process model repositories," Business
Process Management Journal, 2020.

[34] A. Beheshti, B. Benatallah, and H. R. Motahari‐Nezhad,

"ProcessAtlas: a scalable and extensible platform for business process
analytics," Software: Practice and Experience, vol. 48, no. 4, pp. 842-866,
2018.
[35] F. Corradini, F. Fornari, A. Polini, B. Re, and F. Tiezzi, "RePROSitory:
a Repository Platform for Sharing Business PROcess modelS," BPM
(PhD/Demos), vol. 2420, pp. 149-153, 2019.
[36] A. Polyvyanyy, A. Pika, and A. H. ter Hofstede, "Scenario-based
process querying for compliance, reuse, and standardization," Information
Systems, vol. 93, p. 101563, 2020.
[37] S. Yongchareon, C. Liu, and X. Zhao, "Reusing artifact-centric
business process models: a behavioral consistent specialization
approach," Computing, pp. 1-37, 2020.
[38] M. Camargo, M. Dumas, and O. González-Rojas, "Automated
discovery of business process simulation models from event logs,"
Decision Support Systems, vol. 134, p. 113284, 2020.
[39] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, and G. Bruno,
"Automated discovery of structured process models from event logs: The
discover-and-structure approach," Data & Knowledge Engineering, vol.
117, pp. 373-392, 2018.
[40] H. Huang et al., "Efficiently querying large process model repositories
in smart city cloud workflow systems based on quantitative ordering
relations," Information Sciences, vol. 495, pp. 100-115, 2019.
[41] T. Jin, J. Wang, N. Wu, M. La Rosa, and A. H. Ter Hofstede, "Efficient
and accurate retrieval of business process models through indexing,"
presented at the OTM Confederated International Conferences" On the
Move to Meaningful Internet Systems", 2010.
[42] A. H. Ter Hofstede, C. Ouyang, M. La Rosa, L. Song, J. Wang, and A.
Polyvyanyy, "APQL: A process-model query language," presented at the
Asia-Pacific Conference on Business Process Management, 2013.
[43] B. Mahleko and A. Wombacher, "Indexing business processes based
on annotated finite state automata," presented at the 2006 IEEE
International Conference on Web Services (ICWS'06), 2006.
[44] H. Leopold, H. van der Aa, F. Pittke, M. Raffel, J. Mendling, and H. A.
Reijers, "Searching textual and model-based process descriptions based
on a unified data format," Software & Systems Modeling, vol. 18, no. 2, pp.
1179-1194, 2019.
[45] M. Ponti, L. Ribeiro, T. Nazare, T. Bui, and J. Collomosse, Everything
You Wanted to Know about Deep Learning for Computer Vision but Were
Afraid to Ask. 2017, pp. 17-41.
[46] T. Jin, J. Wang, and L. Wen, "Efficient Retrieval of Similar Business
Process Models Based on Structure," vol. 7044, pp. 56-63, 2011.
[47] H. Zha, J. Wang, L. Wen, C. Wang, and J. Sun, "A workflow net
similarity measure based on transition adjacency relations," Computers in
Industry, vol. 61, no. 5, pp. 463-471, 2010.
[48] M. T. Gómez-López, A. M. R. Quintero, L. Parody, J. M. P. Álvarez,
and M. Reichert, "An architecture for querying business process, business
process instances, and business data models," in International Conference
on Business Process Management, 2017: Springer, pp. 757-769.
[49] D. Brdjanin, S. Ilic, G. Banjac, D. Banjac, and S. Maric, "Automatic
derivation of conceptual database models from differently serialized
business process models," Software and Systems Modeling, pp. 1-27,
2020.
[50] Y. Huang, W. Li, Z. Liang, Y. Xue, and X. Wang, "Efficient business
process consolidation: combining topic features with structure matching,"
Soft Computing, vol. 22, no. 2, pp. 645-657, 2018.
[51] W. M. P. V. D. Aalst, "Process discovery from event data: Relating
models and logs through abstractions," Wiley Interdisciplinary Reviews
Data Mining & Knowledge Discovery, vol. 8, no. 3, p. e1244, 2018.
[52] R. Zhu, T. Li, Q. Mo, Z.-L. He, Q. Yu, and Y.-Q. Wang, "Data-Driven
Bilayer Software Process Mining," Ruan Jian Xue Bao/Journal of Software,
vol. 28, pp. 3455-3483, 2018

doi: 10.13328/j.cnki.jos.005304.
[53] S. J. J. Leemans, D. Fahland, and W. M. P. V. D. Aalst, "Discovering
Block-Structured Process Models from Event Logs Containing Infrequent
Behaviour," presented at the Business Process Management Workshops,
2013.
[54] S. J. J. Leemans, D. Fahland, and W. M. P. V. D. Aalst, "Discovering
Block-Structured Process Models from Event Logs - A Constructive
Approach," presented at the Petri Nets, 2013.
[55] P. Darondeau, "Equality of languages coincides with isomorphism of
reachable state graphs for bounded and persistent Petri nets," Inf. Process.
Lett., vol. 94, no. 6, pp. 241-245, / 2005, doi: 10.1016/j.ipl.2005.03.002.
[56] J. Wang, Y. Du, and S. Yu, "Coloured Logic Petri Nets and analysis of
their reachable trees," Enterp. Inf. Syst., vol. 9, no. 8, pp. 900-919, / 2015,
doi: 10.1080/17517575.2013.879924.
[57] K. L. McMillan, "A Technique of State Space Search Based on
Unfolding," Formal Methods Syst. Des., vol. 6, no. 1, pp. 45-65, / 1995, doi:
10.1007/BF01384314.
[58] J. Esparza, S. Römer, and W. Vogler, "An Improvement of McMillan's
Unfolding Algorithm," 1996.
[59] S. Ontañón, "An overview of distance and similarity functions for
structured data," Artificial Intelligence Review, vol. 53, no. 7, pp. 5309-5351,
2020.
[60] A. Burattin and A. Sperduti, "PLG: A Framework for the Generation of
Business Process Models and Their Execution Logs," presented at the
Business Process Management, 2010.
[61] A. Polyvyanyy, A. Pika, and A. H. M. T. Hofstede, "Scenario-based
process querying for compliance, reuse, and standardization," Information
Systems, vol. 93, p. 101563, 2020.
[62] Schäfer, Bernhard, Han van der Aa, Henrik Leopold, and Heiner
Stuckenschmidt. "Sketch2BPMN: Automatic recognition of hand-drawn
BPMN models." In International Conference on Advanced Information
Systems Engineering, pp. 344-360. Cham: Springer International
Publishing, 2021.
[63] M. A. B. Ahmadon and S. Yamaguchi, "Convertibility and Conversion
Algorithm of Well-Structured Workflow Net to Process Tree," presented at
the Proceedings of the 2013 First International Symposium on Computing
and Networking, 2013.
[64] A. Polyvyanyy, L. Garc¨ªa-Ba£¿uelos, D. Fahland, and M. Weske,
"Maximal Structuring of Acyclic Process Models," Computer Science, 2011.
[65] S. Jinyong, G. Tianlong, W. Lijie, Q. Junyan, and M. Yu, "Retrieval of
Similar Semantic Workflows Based on Behavioral and Structural
Characteristics," Journal of Computer Research and Development, vol.
54(9), pp. 1880-1891, 2017, doi: 10. 7544/ issn l000-1239. 2017.
20160755.
[66] D. ZH, W. LJ, H. HW, and W. JM, "Behavioral Similarity Algorithm for
Process Models Based on Firing Sequence Collection," Journal of
Software, vol. 26, no. 3, pp. 449-459, 2015.
[67] M. Kunze, M. Weidlich, and M. Weske, "Querying process models by
behavior inclusion," Software & Systems Modeling, vol. 14, no. 3, 2015.
[68] J. Tao, J. Wang, and L. Wen, "Querying Business Process Models
Based on Semantics," presented at the Database Systems for Advanced
Applications, 2011.
[69] Z. Yan, R. M. Dijkman, and P. W. P. J. Grefen, "FNet: An Index for
Advanced Business Process Querying," presented at the BPM, 2012.
[70] P. Delfmann, D. Breuker, M. Matzner, and J. Becker, "Supporting
Information Systems Analysis Through Conceptual Model Query – The
Diagramed Model Query Language (DMQL)," Communications of the
Association for Information Systems, vol. Vol. 37, no. Article 24, pp. 473-
509, 2015.
[71] P. Delfmann, M. Steinhorst, H. A. Dietrich, and J. Becker, "The generic
model query language GMQL – Conceptual specification, implementation,
and runtime evaluation," Information Systems, vol. 47, no. C, pp. 129-177,
2015.
[72] L. Wen, J. Wang, W. Aalst, B. Huang, and J. Sun, "Mining process
models with prime invisible tasks," Data & Knowledge Engineering, vol. 69,
no. 10, pp. 999-1021, 2010.
[73] K. W. Church, "Word2Vec," Natural Language Engineering, vol. 23, no.
1, pp. 155-162, 2016, doi: 10.1017/S1351324916000334.
[74] W. van der Aalst, J. Buijs, and B. van Dongen, "Towards Improving the
Representational Bias of Process Mining," presented at the SIMPDA, 2011.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3348294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Yunnan University. Downloaded on January 24,2024 at 18:32:46 UTC from IEEE Xplore. Restrictions apply.

AUTHOR ET AL.: TITLE 15

Rui Zhu (Member, IEEE) received the B.S. degree
in software engineering and the M.S. and Ph.D degrees in system analysis
and integration from Yunnan University, Kunming, China in 2006, 2010 and
2016, respectively. He is currently a Head and Associate Professor of
Artificial Intelligence with the School of Software, Yunnan University,
Yunnan, China. He was a visiting scholar with Peking University from 2019
to 2020. He is also the Core Scientist of the Yunnan Key Laboratory of
Software Engineering and the Yunnan Software Engineering Academic
Team. In 2022, he received the Yunnan Province Xing Dian Talents
Support Plan Young Scholar Title. His research interests include business
process management, process mining, service computing and deep
learning. He has published around 70 research papers in national and
international conferences and journals.

 Yue Huang received the BSc degree in software
engineering from the Wuhan Polytechnic University, Wuhan, China, in
2018, and the MSc degree in software engineering from the Yunnan
University, Kunming, China, in 2021. She is currently working toward the
PhD degree with the software and data engineering research center,
Shandong University, Jinan, China. Her main research interests include
federated learning, models bussiness processes analysis and service
computing.

 Ling Liu, Ph.D., is a Professor in the College of
Computing at Georgia Institute of Technology and an elected IEEE Fellow.
She directs the research programs in Distributed Data Intensive Systems
Lab (DiSL), examining performance, availability, security, privacy, trust and
data management issues in big data systems, cloud computing and
distributed computing systems. Liu and the DiSL research group have
been working on various aspects of distributed data intensive systems,
ranging from Big Data systems and data analytics, Cloud Computing and
cloud datacenters, distributed systems, decentralized and social
computing, mobile and location based services, sensor network and event
stream processing, to service oriented computing and architectures.

 Wei Zhou received the Ph.D. degree from the
University of Chinese Academy of Sciences. He is currently a Full
Professor with the Software School, Yunnan University. His current
research interests include the distributed data intensive computing and

network security. He host a number of National Natural Science
Foundation projects.

 Xuan Zhang received the B.S. and M.S. degrees
in computer science and the Ph.D. degree in system analysis and
integration from Yunnan University, Kunming, China. She is currently a
Professor with the School of Software, Yunnan University, Yunnan, China.
She is also the Core Scientist of the Yunnan Key Laboratory of Software
Engineering and the Yunnan Software Engineering Academic Team. She
has been a principal investigator for more than 30 national, provincial, and
private grants and contracts. She is the author of three books and more
than 100 articles. Her research interests include knowledge graph(KG),
natural language processing (NLP), business process management and
service computing.

 Yeting Chen(Member, IEEE) received a Master's
degree in Management Science and Engineering from Yunnan University
in Kunming, China in 2013, and a Ph.D. in Economics from Central
University of Finance and Economics in Beijing, China in 2019. The current
Director and Associate Professor of the Department of Digital Economy at
the School of Economics and Management, Yunnan Normal University,
Yunnan Province, China. In 2020, she was awarded the title of Young
Scholar in the Yunnan Xingdian Talent Support Program. Her research
interests include business process management and service computing.
She has published about 30 research papers.

 Li Cai received the MS degree in computer
application from Yunnan University, China, in 2007, and the PhD
degree in computer software and theory from Fudan University, China,
in 2020. From 1997 to 2002, she was a research assistant with
Network Center. Since 2010, she has been an associate professor
with the School of Software, Yunnan University, China. Her
researchinterests include machine learning, business process
management, service computing and data quality.

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3348294

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Yunnan University. Downloaded on January 24,2024 at 18:32:46 UTC from IEEE Xplore. Restrictions apply.

