Multimedia Tools and Applications
https://doi.org/10.1007/s11042-023-16592-3

®

Check for
updates

GIMM: A graph convolutional network-based paraphrase
identification model to detecting duplicate questions in QA
communities

KunPeng Du'? . Xuan Zhang'**® . Chen Gao' - Rui Zhu'3#. Qiong Nong' -
XianYu Yang' - ChunLin Yin®

Received: 18 May 2022 / Revised: 2 May 2023 / Accepted: 21 August 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract

Paraphrase Identification (PI) is an important task in Natural Language Processing (NLP),
which aims to detect whether two sentences expressed in various forms are semantically
consistent. It can be used to solve the problem of duplicate detection in QA Communi-
ties (eg: Quora and Stack Overflow). There have many studies that applied Convolutional
Neural Networks to capture rich matching information between sentence pairs layer by
layer. However, only a limited number of studies have explored the more flexible Graph
Convolutional Networks (GCNs) for this task. GCN operates directly on the graph, and
learns the representation of the node according to the neighborhood information of nodes.
Thus, the interactive information between two sentences can be effectively integrated
based on the local graph structure. In this paper, a Graph-based Interaction Matching
model (GIMM) for PI is proposed. GIMM takes each word as a node, the word co-occur-
rence relations between sentence pairs, and the phrase relations within a single sentence
as the relations between nodes to build the interaction graph. Then, the GCN are applied
to learn the richer word representations based on the local structure of the graph. Finally,
the node representations are aligned by the Attention mechanism to obtain the match-
ing vector, and the results of PI are obtained by the Fully Connected Layer. We conduct
experiments to compare the performance of GIMM with the current baselines on the
Quora and Stack Overflow datasets. Experimental results demonstrate that the proposed
model achieves excellent performance on both of these datasets.

Keywords Paraphrase identification - Graph convolutional network - Graph-based
interaction - Text matching

P4 Xuan Zhang
zhxuan@ynu.edu.cn
School of Software, Yunnan University, Kunming, Yunnan, China

School of Electro-Mechanical and Information, Yiwu Industrial & Commercial College, Yiwu,
Zhejiang, China

Key Laboratory of Software Engineering of Yunnan Province, Kunming, Yunnan, China
Engineering Research Center of Cyberspace, Kunming, Yunnan, China

Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan, China

Published online: 15 September 2023) Springer

http://orcid.org/0000-0003-2929-2126
http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-023-16592-3&domain=pdf

Multimedia Tools and Applications

1 Introduction

Due to the rich variability of natural language, Paraphrase Identification (PI) plays
an important role in the field of Natural Language Processing (NLP). PI aims to detect
whether two sentences expressed in various forms are semantically consistent [1]. It can be
used to improve many related tasks, such as machine translation evaluation [2], information
retrieval [3], question and answer systems [4], plagiarism detection [5], etc. In addition,
analyzing data from Community-based Question Answering (CQA) sites (eg: Quora and
Stack Overflow) is becoming an increasingly popular direction. It can be very interesting to
look at paraphrasing issues on CQA because the CQA often encounters a problem where
there are a large number of questions within the community that are expressed in different
ways but actually have the same intent. Multiple questions with the same intent may cause
the questioner to spend more time trying to find the best answer. It also takes more time for
the responder to answer multiple versions of the same question over and over again. The
large number of duplicate questions make it more difficult to maintain these Communities
and severely impacts the user experience, while reducing the number of duplicate issues in
the Communities by manually analyzing and flagging duplicate questions manually take a
lot of time and effort. PI is one of the methods to solve the duplication questions in CQA.
Recently, many studies for this task have emerged, such as DupPredictor [6], Dupe [7],
CQADupStack [8] and SemEval-2016 Task 3[9]. Although these methods detect duplicate
questions in CQA automatically, they only use the similarity aspect of the text, matching
scores for PI are then generated. Such methods are literal-level text comparisons that do
not adequately consider the semantic relevance between texts. Recent work has shown that
deep learning models have proven to be effective for PI tasks [10—12]. For PI approaches,
there are two different ways to train paraphrase models. The first is the representation-based
method [13-16], which seeks to encode each sentence in an independent manner to obtain
a high-quality sentence vector. Then the similarity between two vectors is calculated as the
match between texts in this type of method, two sentences are encoded independently and
they cannot make use of interactive information during encoding. The other is the interac-
tion-based method [10, 11, 17, 18]. Based on the recognition that making a good match-
ing decision requires considering the rich interaction structure in the text matching process
[1], the interaction between sentences at all levels is considered to capture rich matching
features. In our work, we use an interaction-based approach that captures as much interac-
tive information as possible to improve performance. However, only a limited number of
studies have explored the more flexible graph convolutional neural networks for the task.
Inspired by the application of Graph Neural Networks (GNNs) in NLP tasks, such as text
classification [19, 20], semantic role labeling [21]and relation extraction [22], recommen-
dation systems [3], machine translation [2] as well as summary generation [23]. Compared
to the other Deep Neural Network approaches, GNNs learn the richer word representa-
tions based on graph’s local structures and capture the non-consecutive phrases and long-
distance word dependency semantics [24]. For example, in a text classification task, all
text and words can be considered as nodes and then a GCN can be applied to complete the
classification task and outperform traditional CNN models [19, 20]. In this paper, we pro-
pose a new PI model, Graph-based Interaction Matching model (GIMM) based on graph
structure. Firstly, in order to obtain multi-level text features, we use three concatenations
of word embedding, character embedding and syntactic features as embedding represen-
tation. Meanwhile, to effectively integrate the interaction information between sentences,
GIMM takes each word as nodes, phrase relations within a single sentence, and word co-
occurrence relations between sentence pairs as inter-node relations to construct interaction

@ Springer

Multimedia Tools and Applications

graphs. Then GCN is used to learn the richer word representations based on graph’s local
structures, Finally, the node representations are then aligned by the attention mechanism to
obtain the matching vector, and the probability distribution of PI results is calculated based
on matching features through the fully connected layer. To demonstrate the effectiveness of
our model, we conducted experiments on the Quora dataset with the Stack Overflow data-
set to evaluate the performance of our model. Experimental results on these two datasets
show that our method can obtain better performance than previous methods.
The main contributions of this paper can be summarized as follows:

(1) The paper introduces a novel approach for generating interaction graphs that cap-
ture rich interaction information between non-consecutive phrases and long-distance
words in sentence pairs, which leads to better matching decisions.

(2) The proposed PI model uses GCNSs to learn more comprehensive word representations
based on the local structure of interaction graphs. This approach aggregates informa-
tion from neighboring nodes and interaction information in the graph, enabling the
model to fully capture word semantics and interactions.

(3) The experimental results on publicly available datasets demonstrate that the proposed
model significantly outperforms the other baselines and achieves an impressive F1
value improvement of 7.25% on the Stack Overflow dataset. This indicates that the
proposed approach has great potential for improving the accuracy and effectiveness
of PI tasks.

This paper is structured as follows: we present related work in Section 2, and introduce
our proposed GIMM framework in Section 3. We describe the dataset, experiments, and
analysis in Section 4. Finally, we conclude and discuss future work in Section 5.

2 Related work

One of the cores of our proposed GIMM is the use of GNNss to learn richer node represen-
tations based on the local structure of the interaction graph, other GNN-based models that
have guided our work. Also, PI is one of the subtasks of text matching and most of the Text
Matching (TM) models are inspiring for the PI task. In this section, we will briefly review
two necessary tasks related to our work: Graph Neural Networks and text matching models.

2.1 Graph neural network

GNNs have shown important insights in representation learning, and research on ana-
lyzing graphs with machine learning has received increasing attention [25]. Unlike
data with regular grid structures (e.g., images and sequences), an increasing number
of applications represent data as arbitrary structured graphs [19], including social net-
works, Knowledge Graphs (KG) [26], protein structures, etc. Typically, nodes in the
graph will have variable-sized neighbors, and traditional operations in deep learning
(e.g., Convolution and Pooling) will be ineffective [19]. To solve these problems, schol-
ars have proposed GNN [27, 28]. GNNs usually follow the principle of neighborhood
aggregation, where nodes compute their representation vectors by iteratively aggregat-
ing and transforming their neighborhood representations, i.e., aggregating node infor-
mation using edge information to generate a new node representation [28]. Inspired by

@ Springer

Multimedia Tools and Applications

spectral graph theory, Kipf et al [29] proposed the GCN and achieved state-of-the-art
results on several semi-supervised graph classification tasks. Graph Neural Networks
(GNN) typically require graph modeling, which can be referred to as "graph-based
solutions." These models first transform text into a word graph before applying graph
convolution operations to the word graph. When using GNNs for classification tasks,
the way to construct the graph structure is not the same depending on the application
scenario. Generally, these models use words or text as nodes of the graph, and edges
are constructed in a variety of ways, such as based on word co-occurrence relations
[30, 31], document word relations [19], word similarity relations [24], word frequency-
inverse document frequency (TF-IDF) relations in documents [19], point-wise mutual
information (PMI) relations [32], semantic-aware inverted index structure constituted
by inverted index and semantic networks (SemlIndex) [33, 34] etc. Some models [24,
30, 31] generally set a fixed size sliding window to collect co-occurrence information
in order to take advantage of global word co-occurrence information, while reducing
memory consumption during training. The graph structure constructed by these graph-
based solutions has the advantage of capturing non-sequential and long-distance seman-
tics, which has achieved excellent performance in text classification tasks. However,
GNN-based models are not currently used to handle PI tasks or sentence pair mode-
ling related tasks. The main reason is that there is no efficient way to represent the
sequenced text as a graph and to construct the interaction between two sentences. It is
not clear whether the GNN-based model is valid for this type of task. Therefore, we try
to propose a new model of PI based on graph structure, and through experiments we
evaluate the effectiveness of the proposed approach.

2.2 Text matching

Text matching is a central problem in natural language understanding. The study of Text
Matching (TM) can be applied to a large number of known NLP tasks, such as informa-
tion retrieval [3], Question Answering [4], Semantic Textual Similarity [35, 36], machine
translation [2], dialogue systems [37], Paraphrase Identification [10-14], and so on.
These NLP tasks can all be abstracted to some extent into TM problems, such as infor-
mation retrieval which can be reduced to matching query terms and documents. Ques-
tion Answering can be reduced to matching questions and candidate answers, machine
translation can be boiled down to matching between two languages, dialogue systems
can be boiled down to matching the previous sentence of dialogue and the response,
and PI can be boiled down to matching two synonymous words and phrases. Recently,
the research on TM has gradually shifted from statistical-based methods to deep neural
network-based methods. Usually statistical-based methods need to be based on a large
number of manually defined and extracted features with relatively few learnable param-
eters, and they consider that the more the number of occurrences of the same word in
two texts and the closer the ordering of the word sequences, the more the two express the
same semantics. Examples include the traditional TFIDF [38], BM25[39], LD (Leven-
shtein Distance) [40] algorithms based on lexical overlap. Using deep learning methods,
features can be automatically extracted from the original data, eliminating the need for
a lot of manual feature design overhead. In this research direction, the feature extrac-
tion process is part of the model and can be easily adapted to different tasks depending
on the training data. The first is the semantics-based solutions, which attempt to extract
semantic information from multiple perspectives, use rich semantic information to model

@ Springer

Multimedia Tools and Applications

matching models, and then calculate the similarity between two vectors. For text match-
ing, this involves extracting multiple perspectives of semantic information from text,
followed by matching. Classic works in this category include the DSSM model [41],
Siam-CNN [42], Siam-LSTM [15], and InferSent [43]. These methods encode the two
sentences independently, without utilizing interactive information during encoding, but
have a simple model structure, strong interpretability, and are easy to implement. Sub-
sequent methods have emerged to enrich semantic information from different perspec-
tives. For example, Wang et al. [44] used external unstructured Wikipedia knowledge
combined with the semantic information of two sentences to make predictions, DPIM-
ISS [45] considered the interaction between semantics and syntax, Mohamed et al.[46]
separated the calculation of named entity tagged semantic similarity from other parts
of sentence text, and the SNMA [47] framework separated the comparison and inter-
action modules, distinguishing semantic differences and extracting interactive informa-
tion. Additionally, MatchACNN [48] learning architecture extracted features at multiple
granularities such as words, phrases, and even sentences, and used a two-dimensional
convolutional neural network attention mechanism for matching. These semantics-based
solutions have achieved good results in specific scenarios. The other is the interaction-
based approach, which captures richer matching features based on the recognition that
making a good matching decision requires considering the rich interaction structure in
the text matching process [49], the interaction between sentences at all levels is consid-
ered to capture rich matching features. The classical models include an enhanced sequen-
tial inference model (ESIM) [11], a bilateral multi-view matching model (BiMPM) [12],
the RE2 model [17], and the dense interactive inference network (DIIN) [10], etc. Such
methods can capture the interactions between two sentences at various levels and thus
improve the performance of the model, but the models are generally more complex. In
this paper, we propose GIMM for PI using an interaction-based approach. Drawing on
previous state-of-the-art work, we construct an interaction graph of two sentences and
use GCNs, combined with local structure learning of the graph to obtain a richer fine-
grained node representation that aggregates the information of its neighboring nodes, as
well as the interaction information in the interaction graph, to fully capture the semantics
of word information and its interaction.

3 Method

In this section, we first provide a brief definition of the PI task in Section 3.1, a high-level
overview of our model in Section 3.2, and then a detailed description of the Graph Con-
struction and Graph-based Word Interaction in Section 3.3.

3.1 Task definition

In general, we can consider each instance of the PI task as a triple(S,, S,, lab), where
S, = {w;,w,, ...,w,,} is a sentence of length m,S, = {v,v,,....,v,} is a sentence of length
n. labeY is a label that represents the relation between S, and S, and Y is a set of task-spe-
cific labels. The PI algorithm is to learn a classification function (Sa, S b) — lab for deter-
mining whether each instance S, S, is a paraphrased pair or not. Usually, lab = 1,means the
two sentences have the same semantic meaning, which is a paraphrased pair. lab = 0, which

means the semantics of the two sentences do not agree, and it is a non-paraphrased pair.

@ Springer

Multimedia Tools and Applications

3.2 Model overview

In this section we introduce our proposed Graph-based Interaction Matching model
(GIMM). Fig. 1 shows the overall structure, which is divided into Embedding layer, Con-
textual Encoding layer, Graph Interaction layer, Alignment layer, and Output layer.

Embedding layer The goal of the Embedding layer is to represent each word in S,
and S, with a d-dimensional vector and construct a representation matrix of the sen-
tences. After pre-processing the sentences S, and S, by removing stop words, word
stemming, and Lemmatization. We use word embedding, character embedding [50]
and word co-occurrence features, an Indicator Function (IF) [49], and the concatena-
tion of these three different vectors as the output of the embedding layer. Word embed-
ding is obtained by mapping words to a high-dimensional vector space using a pre-
trained word vector GloVe?[51]. Character embedding' follows the work of Wang et al
[50], where all characters of a word are first vectorized and then the character sequence
is fed into the Bi-directional Long Short-Term Memory Network (Bi-LSTM), and then
the forward final output of the Bi-LSTM and the reverse final output is concatenated,
where the character embedding is randomly initialized and learned along with other
network parameters in the model. Character embedding provides additional informa-
tion for some out-of-vocabulary (OOV) words. Word co-occurrence features are used
to mark two sentence pairs with the same stem between them, and this simple exact
matching helps the model to understand the sentences better [10], considering that
there are generally a certain number of co-occurring words in the paraphrase pairs.
The output of this layer is the embedding vectors E,, : [e?, ey e;‘n],Eb : [ell’, ey ez]. The
embedding vector ef is the concatenation of word embedding, character embedding

and word Co-occurrence features, and so is ej’?.

Contextual encoding layer In this layer, Bi-LSTM is used to merge contextual informa-
tion into the representation of each word. The Bi-LSTM consists of forward and backward
LSTMs [52]. With its three-gate structure, the LSTM can solve the long-term dependence
problem well. Using Bi-LSTM, the bidirectional semantic dependencies within neural
units can be well captured. This step can be represented by the following equation.

E:LSTM(E_l,ei>i= 1. N)
E:LSTM(%HI,ei)i:N,...,l @)
he= [©)

where N is the length of the input sequence and e; is the embedding vector of the embed-
ding layer. E is the hidden layer state of the forward LSTM in time step zE is the hid-
den layer state of the backward LSTM, and #4; is the input of the Bi-LSTM in time step i,
denoted as the contextual embedding of the word w;.

! Qur pre-trained word embeddings are openly available in https:/nlp.stanford.edu/projects

@ Springer

https://nlp.stanford.edu/projects

Multimedia Tools and Applications

y
1
LRy
Output Layer
Pooling
t 1
Alignment Layer Alignment

Contextual Encoder Layer

BiLSTM mm Bil STM BiLSTM = Bi|STM BiLSTM = BiLSTM BiLSTM mm BiLSTM
£ 1 f £ f £ f

F

Embedding Layer
[) (} [) [] [] [) [) @ word Co-occurrence features
(] [[] o [) o - @ () character embedding
([] [] [] [] [] ([J o o word embedding

Saiw,, Wy, . y Wos s W, ShiVi, Vo) Vaus Vi }7

Fig. 1 The overall structure of the Graph-based Interaction Matching model (GIMM), where the Graph
Interaction Layer constructs a graph of interactions between two sentences by treating each word as a node
of the graph. The contextual embedding of the word is used as the feature of this node, and the word co-
occurrence relations between sentence pairs, and the phrase relations within a single sentence is used as the
inter-node relations. using its node features and graph structure information, the representation of the node
is learned through GCN, and the output is G,, G, representation sequence. p is the value of the sentence
pair representation vector pooling after doing the concatenation

Graph interaction layer This is the core layer of our model. We take each word w; as a
node of the graph, the contextual embedding of the word as a feature of that node, the word
co-occurrence relations between sentence pairs, and the phrase relations within a single
sentence as the inter-node relations are used to construct the interaction graph of two sen-
tences. Then, according to the node features and the structure information of the graph, the
embeddings of word nodes are learned through GNNs, where a node can aggregate infor-
mation from neighboring nodes and update its representation based on its original represen-
tation and the information aggregated to obtain a graph interaction representation. The out-
put of this layer is a sequence of two interaction features G, : [g? gfn] ,Gy ¢ [g? Y eeees gﬁ].
The specific graph structure and graph-based interaction operations are described in detail
in Section 3.2.

Alignment layer The attention mechanism was first used in neural machine translation
models [53]. The attention mechanism can efficiently extract the interaction information
between sentences by inter-sentence alignment and obtain better performance. In this
paper, the attention mechanism is applied to capture semantic interactions between pairs
of sentences. The alignment layer takes the features G,G, of two sequences as input and
computes the aligned representation as output. The output Graph Interaction Layer has a

@ Springer

Multimedia Tools and Applications

sequence of graph interaction features G, G, where the attention weight value e; between
g and 8; bi e [1,m), j € [1,n]) is computed as the dot product of the two vectors.

e =8¢ 4)

The aligned output vectors a’ and b’ are computed by a weighted summation of the rep-
resentations of the other sequence. This summation is obtained by weighting the attention
weights between the current position and the corresponding position in the other sequence
and is calculated as follows:

a4 =25 o S &)

Exp(e’]) (l
Z 5 (©)

Intuitively, a;’ is the weighted sum of { gj’.’}r_l ’ and the content associated with @, in
=
{ gj’.’) X will be selected and represented as a;/. The alignment vectors a/ and b/ are obtained
=

by performing the same operation on each word in the sequence. As with other advanced
models [10, 11, 17], to further compare the graph-interaction (local) representation and the
aligned representation, we concatenated the graph-interaction representation of the words
with the aligned features to merge the aligned features. Comparing the local and aligned
representations from three perspectives, the formula is as follows:

a, =f([gs a/]) 9
a; = f([sf @i - af]) ®)
a, =1;([gf: ;- ay]) ©)

a = [a‘ @ a*] (10)

where [;] is the concatenation operation, [—] represents the subtraction operation highlights
the difference between two vectors, and [-] indicates the dot product operation highlights
the similarity between vectors. f), f,, f; are three single-layer feedforward networks with
independent parameters respectively. Finally, we concatenate the results obtained from the
above three fusion methods and input them into another single-layer feedforward network
F to get a;, and do the same for the other sentence to get b;.

Output layer According to Eq. (3), the output @ and b of the Bi-LSTM is obtained, and
the maximum pooling and average pooling are performed, and the values after pooling are
concatenated together again. The specific formula is as follows:

_ m ha ;
hoave = 2, — 11

i=1 m

@ Springer

Multimedia Tools and Applications

h = h,;

a,max irenltlqucl a,i (12)
n
hy =y —2
b,ave Z n (1 3)
j=1

hb,max = j'él[cll’f]hb,/ (14)
pP= []Tla,ave ;Ea,max ;Eb,ave ;Eb,max] (1 5)

p is the value from pooling. In this step, p is as the input for GIMM. Therefore, the final
probability distribution is output according to the experimental setup of Mou et al [54].
The specific formula is as follows:

y=H({p) (16)

H is a multi-Layer Perceptron (MLP) classifier. In the experiment, the MLP has a hid-
den layer with tanh activation and a softmax output layer. where 3 € R, is the probability
distribution of each class, where C is the number of classes.

3.3 Graph-based interaction

The graph-based interactions are implemented in the Graph Interaction Layer, which we
introduce in two parts: Graph Construction, Graph-based Word Interaction.

Graph construction In this section, we describe how to represent the sentence pairs S,
and S, as a graph G. Suppose that the graph G = (V, E), where V is the set of vertices
with node characteristics and E is the set of edges as topology. We denote each word
in a sentence pair as a node of size m + n,the sum of the two sentence lengths, then
V={w,w,y,..ow,,V|,V,,....,v,}. The output of the Contextual Encoding Layer, i.e.,
the contextual embedding of the word, is used as the features of this node. In addition
to the node feature matrix, the adjacency matrix describing the topology also forms the
graph. This structure usually describes the connections between nodes and reveals their
relations, i.e., edges. Pang et al [49] argue that two semantically identical sentences have
many identical or similar counterparts at the word level. The same holds true at the phrase
level, where more information can be obtained by doing interactions at a finer granular-
ity. Pang et al [49] constructed a matching matrix when constructing the relations between
words, considering three different perspectives: Indicator Function (whether two words are
the same), cosine (cosine similarity), and dot (inner product). They construct a word order
retention graph and then select one of the top N nodes from each node’s ranking of prox-
imity centrality features to establish a relation. Similarly, edges can be used to represent
different types of relations between any nodes, such as lexical or semantic relations [55].
We consider two types of relations between sentences when constructing edges: word co-
occurrence relations between pairs of sentences and phrase relations within a single sen-
tence. The construction of these two types of relations is shown in Fig. 2:

@ Springer

Multimedia Tools and Applications

Fig.2 An example of Word S, “what|do intelligent people do to pass time”
co-occurrence relations between

sentence pairs, phrase relations
within a single sentence

S, “How|do intelligent people spend their time”
Phrase edge

—— Cooccurrence edge

The word co-occurrence relations between two pairs of sentences are used to describe
a relation between two pairs of sentences that have the same word. We use NLTK? to do
Lemmatization and Stemming for all words. After the above process, if a word in S, is
same as another word in S, then these two nodes have a Cooccurrence edge. Consider-
ing that it is easy to have long sentences in which a word in S, has more than one co-
occurrence in S, for example, S, is "what do intelligent people do to pass time?" and S,
is "how do intelligent people spend their time". The "do" in S, corresponds to the two
"do" in §,. Obviously, the semantics of the expression is more similar to the first "do"
in S,. We set up a sliding window, and the final co-occurrence relation describes the
relationship between words that appear within a fixed-size sliding window, where each
word is connected to neighboring words that may share related contextual meanings.
The sliding window is set to avoid dense connections of graphs. If the connections of
a graph are too dense, the structural information is blurred during message passing in
the GNN [30]. The effectiveness of sliding windows was demonstrated by the work of
Nikolentzos et al [56] and Zhang et al [30]. After getting the word co-occurrence rela-
tions between sentence pairs, we consider the phrase-level relations within a single sen-
tence, and we connect the words that make up the phrases under the co-occurrence rela-
tions as phrase relations. As in the above example S, and the set of co-occurring words
of S, is: {do, intelligent, people, time}, where {do, intelligent, people} is sequentially
connected according to the sequence order in the sentence, then "do intelligent people "
is a phrase, then they are connected using phrasal edges.

Then the edges can be represented by the adjacency matrix A € [0, 1]""XI"7 where
the formula is as follows:

Cooccurrence(i,j) (i € [1,m],j € [1,n])
AiJ = < Phrase(i,)) (i ell,ml,je[l,n]) (17)
0 other

where A;; = 0 means node i and node j are not related and are not connected in the graph,
Cooccurrence(i,j) means node i and j have co-occurrence relations. Phrase(i,j) means
node i and j have phrase relations, and the values of Cooccurrence(i, j) and Phrase(i, j) are
hyperparameters and each node is connected to itself.

Graph-based word interaction GCN is a multilayer neural network that operates directly
on the graph structure [29], it aggregates the current node features and first-order neighbor-
ing node features to represent the new features of the current node, by which it facilitates
the introduction of contextual information of graph nodes, making each node representa-
tion influenced by neighboring nodes. In Graph Construction we constructed graphs for

2 https://www.nltk.org/

@ Springer

https://www.nltk.org/

Multimedia Tools and Applications

sentence pairs, and we formed all node features into a feature matrix X € RImtnixd \where
|m + n|is the total number of nodes and d is the feature dimension. Then the message pass-
ing rules of multilayer GCN can be expressed as the following equation, and the message
passing of GCN is shown in Fig. 3:

HD =f(HO, A) (18)

Here k refers to the number of network layers, and H® is the feature of the kth
layer of the network, where H® = X. where A is the adjacency matrix obtained from
Equation (17).

Following the graph convolutional operator given by Kipf et al [29], Eq. (18) becomes

D = (BT AD T HOW®) (19)

where A = A + 1 is the adjacency matrix of the undirected graph G with added node self-
connections./ is the unit matrix, D;; = 3, A, » W® s the trainable weight matrix, and then
zAD 2 is the normalized symmetrlc nelghbor matrix.f(e) denotes the activation func-
t1on, and H*D g RI™nxd i the activation matrix of the k+1th layer.
Since our edges are provided with weight values to distinguish between classes of edges,
the nodes are updated with the following formula:

k+1) _ T @i (k+1)
HEY =w Z—H‘ 20)

vag

where d; = 1 + Zj a;; is the edge weight i from source node j to target node. We capture
information about direct neighbors by a layer of graph convolution to obtain two sequences
of interaction features G, : [g‘f, s &] .Gy - [g”, ey gb].

n 1 n

4 Experiments

In this section, we evaluate our model on two PI datasets. We first introduce the datasets
in Section 4.1, and the experiments setup and evaluation metrics of the GIMM model
are also briefly described. Then, we present the baseline of the experiments and com-
pare our model with state-of-the-art models in Section 4.2. Finally, in Sections 4.3, 4.4,
and 4.5 we perform some case studies to fully evaluate the properties of our model.

Fig. 3 GCN'’s message passing schematic

@ Springer

Multimedia Tools and Applications

4.1 Dataset and experiment settings

In this section, we briefly describe the datasets used in the experiments and the experiment
setups and evaluation metrics.

Quora Question Pairs® [57] is a dataset containing 400,000 question pairs collected from
the Quora website. Each question pair is labeled with binary values indicating whether
two questions are paraphrased from each other. We randomly select 5,000 paraphrases
and 5,000 non-paraphrases as the validation set, and extract another 5,000 paraphrases
and 5,000 non-paraphrases as the test set. What’s more, the remaining instances are as the
training set.

SKU* (Stack Overflow Knowledge Unit dataset) [58]is constructed based on a question-
and-answer data dump from the Stack Overflow website and contains 347,372 knowledge
unit pairs. In this dataset, there are four association classes (Duplicate, Direct, Indirect, Iso-
lated) for Knowledge Unit (KU) pairs according to the degree of association between two
knowledge units from high to low. Duplicate association classes represent two KUs discuss
the same question in different ways and can be answered by the same answer. Direct asso-
ciation classes represent one KU can help solve the problem in the other KU. For example,
by explaining certain concepts, providing examples, or covering a sub-step for solving a
complex problem. Indirect association classes represent one KU provides related informa-
tion, but it does not directly answer the question in the other. Isolated association classes
represent the two KUs are not semantically related [58]. The number of each association
class is 1/4. 60% of the KU pairs in the dataset are used as the training set, 10% as the vali-
dation set, and 30% as the test set.

Taking a sample of KU pairs as an example, each instance of the dataset can be represented
as < KU,,KU,,lab >,where labe{Duplicate, Direct, Indirect, Isolated} is the label indi-
cating the relationship between KU, and KU,. For each KU = {Title, Body, Answer }. Title
represents the title of the question in Stack Overflow, Body is the detailed description of the
question (Exclude Code Snippets), and the "Answer" indicates the text of question’s Accepted
Answer (Exclude Code Snippets). The structure of the SKU data set is shown in Table 1.

Both Quora Question Pairs and SKU are datasets built by taking data from QA com-
munities. The difference is that Stack Overflow is a domain-specific QA community for
software developers, focusing on programming questions, most of which have terminology
or special characters, and the dataset does not simply detect whether knowledge units are
duplicated, but requires the model to consider the relevance of knowledge units. Quora, on
the other hand, is a popular Q&A community where people ask more varied questions that
cover a wide range of topics, including technology, entertainment, politics, culture, and
philosophy, and some questions include special characters, such as mathematical symbols
and foreign language characters. The average length of questions in Quora is 59. SKU has
different text lengths depending on the different parts of the KU, where the average length
of Title is 9, Body is 67, and Answer is 68. choosing different sentences of the dataset
allows us to evaluate the effectiveness of our model for texts of different sizes. The statis-
tics of the two datasets are shown in Table 2. In summary, evaluating our proposed model
on these two highly different datasets, which are both based on community QA, provides
an objective demonstration of the performance of the proposed model on the task of detect-
ing duplicate questions.

3 https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
4 https://anonymousaaai2019.github.io/

@ Springer

https://www.quora.com/profile/Ricky-Riche-2/First-Quora-Dataset-Release-Question-Pairs
https://anonymousaaai2019.github.io/

Multimedia Tools and Applications

A1 ued nok spuodas ur ()26 [| 29UIS W) Y}) SUIUNSSY,, :TOMSUY

9 9NJBA UINJAI P[NOM J1 TRy} OS BAR[UI IT 110AUOD 0} MOH
OS Suisn 11 110AU09 Ued | wiioj 10393u] ut dure)s awr Suimol[oj 2Aey |, :Apog
. 91ep eael ojur dwe)s owy 1oSaju] SUNIAU0)D), 9P,

., Se Jnsa1 awes ay) 3195 0) 9qrssod
SIJ1 0§ ‘00) JuawngIe se sI[u s)doooe JewrtoJareo[duis A 1.g oM pinoys
SIY) OS ()L6] ATenuef | 90UIS SPUOIS JO JOQUINU A} ST SWIT} XTU[),, :JOMSUY
. 1d19y anoA 103 nok uey], AKAK NN PP peyewLio) UL e 19)je ue sse[d
Jle(® 0 JewIo} awn X1up) yooda e s1 yorym SuLng B 119AU0D 0} padu |, :Apog
Jeael Suisn AKAK NI pp 03 awn yoodo 110au0)),, :opL], 9eordnp

v

ny

14

nx °qe[

"JoseIep 3[S oY) Jo 2Imonms YL, | djqel

pringer

As

Multimedia Tools and Applications

Table 2 Dataset Statistics. where the data in parentheses indicate the percentage of the whole dataset

Dataset Quora Question Pairs [57] SKU [58]
Sources https://data.quora.com https://stackoverflow.com
Train Set Size 380k (95%) 208k (60%)
Valid Set Size 10k (2.5%) 34k (10%)
Test Set Size 10k (2.5%) 104k (30%)
All 400,000 347,372
Average Length of Data 59 Title:9
Body:97
Answer:68
Vocabulary Size 743K 234k
Number of Categories 2 4
Categories Paraphrased (37%) Duplicate (25%)
Direct (25%)
Non-Paraphrased (63%) Indirect (25%)
Isolated (25%)

Finally, we implement our model using Pytorch and trained it on an NVIDIA GeForce
RTX 3060. First, pre-processing all sentences, converting them to lowercase letters and
removing all punctuation and stop words. The word embeddings are initialized using
840B-300-dimensional GloVe word vectors and fixed during training. The embeddings of
the out-of-vocabulary words (OOV) are also randomly initialized and fixed. We use the
Adam optimizer with the learning rate set to 0.001. For better training and to force the net-
work to find different activation paths for better generalization, a dropout layer with a value
of 0.2 is used. We do not limit the maximum sequence length, all sequences in the batch are
populated to the batch maximum, the batch size is from 128 to 32, and all measures reported
by the model for the tests correspond to the best values obtained on the validation set.

4.2 Comparison
In this section, we compare our model with state-of-the-art models on PI tasks.

Experiment I: Results on quora The selected baselines are as follows.

Siamese-LSTM [15]: The classical Siamese Neural Network model proposed by Muel-
ler et al, which uses a neural network encoder to encode two input sentences into sen-
tence vectors and makes decisions based on the cosine similarity between the two sen-
tence vectors.

L.D.C[16]: An attention-based model proposed by Wang et al, which decomposes the
hidden representation into similar and distinct parts and then processes each part sepa-
rately to generate the result.

ESIM [11]: Chen et al proposed an enhanced sequential inference model that achieved
competitive performance on an eight-sentence pair modeling task. It uses a Bi-LSTM to
encode each sentence, connects the encoded representations of each pair of sentences,
and classifies them by a multilayer perceptron (MLP).

@ Springer

https://data.quora.com
https://stackoverflow.com

Multimedia Tools and Applications

BiMPM [12]: A bilateral multi-perspective matching model proposed by Wang et al,
which first encodes sentence pairs using a Bi-LSTM encoder. and matches the two
encoded sentences in both directions. Then, the matching results are aggregated into a
fixed-length matching vector using another Bi-LSTM layer. Finally, based on the match-
ing vector, a decision is made by a fully connected layer.

RE2[17]: This model proposed by Yang et al exploits three key features of inter-
sequence comparison: original point-wise features, previous aligned features, and
contextual features while simplifying all the remaining components. The model takes
embedding as input and stacks layers consisting of encoding, alignment, and fusion. The
pooling layer aggregates the sequence representations into vectors, which are finally
processed by the prediction layer for the final prediction.

DIIN [10]: Gong et al. proposed the densely interactive inference network adopts
DenseNet, a two-dimensional convolutional structure, to extract higher-order verbatim
interactions between n-gram pairs. The model has achieved state-of-the-art performance.
BERT-base [13]: Arase proposed transfer fine-tuning using phrasal paraphrases to
allow BERT’s representations to be suitable for semantic equivalence assessment
between sentences.

PPBERT-base [13]: Arase et al. proposed a model called PPBERT-base by using trans-
fer fine-tuning and paraphrase classification training on the BERT-base model to solve
PI tasks.

DITM [18]: Yu et al proposed the Deep Interaction Text Matching (DITM) model. It
uses a matching-aggregation framework and integrates the encoder layer, co-attention
layer, and fusion layer as an interaction module to achieve deep interaction. The interac-
tion process is iterated multiple times to obtain in-depth interaction information, and the
relationship between text pairs is extracted through a collection of multiple perspectives.
Unified Approach [14]: Palivela et al. proposed a lightweight unified model aimed at
solving paraphrase identification and generation problems by using carefully selected
data and fine-tuning the TS5 model. This lightweight model can be trained to achieve
the goal of paraphrase generation and can also be used to solve the task of paraphrase
identification.

Our comparative baselines include two different modeling methods for the PI tasks.
One-class method is a representation-based model, such as Siam-LSTM or L.D.C, which
independently encode two sentences without utilizing interaction information during
encoding. Additionally, with the development of large-scale language models, Researchers
can use these models to obtain better sentence representations and achieve better results
for the PI task through simple fine-tuning. such as BERT-base, PPBERT-base, and Uni-
fied Approach. Although representation-based models have a simple and interpretable
structure, they fail to fully capture the interaction between sentences and generally perform
poorly. Another kind of method is an interaction-based model, such as ESIM, BiMPM,
DIIN, RE2, and DITM. These methods capture interactions at different levels between two
sentences, thereby improving the model’s performance, but the models tend to be more
complex. The above two methods, the former of which solves PI tasks based on seman-
tic similarity technology by obtaining better sentence representations, and the latter of
which uses state-of-the-art deep learning algorithms such as convolutional neural networks
(CNN), recursive neural networks (RNN), and long short-term memory (LSTM) to cap-
ture rich matching information between sentence pairs layer by layer. However, only a few
researchers have explored more flexible GCNs for the PI tasks. GCNs operate directly
on the graph and learns node representations based on adjacency information, thereby

@ Springer

Multimedia Tools and Applications

effectively integrate interaction information between the two sentences, and model them
based on local graph structure.

Compared with the previous state-of-the-art work, we propose a graph-based interac-
tive matching model (GIMM) for PI tasks. GIMM constructs an interactive graph for two
sentences and uses GCNss to learn rich and fine-grained node representation by integrating
local structural information of the graph. In addition, it aggregates information from adja-
cent nodes and interaction information in the graph to fully capture the semantic informa-
tion and interaction of words.

The corresponding comparative experimental results are shown in Table 3:

We can see from Table 3 that the accuracy of Siamese-LSTM, L.D.C, BiMPM, and
ESIM on the Quora dataset are: 0.826, 0.848, 0.882, and 0.853. The accuracy of BERT-
base, PPBERT-base, and Unified Approach on the Quora dataset are: 0.883, 0.880, and
0.872. The accuracy of DIIN, RE2, DITM and our proposed GIMM are: 0.891, 0.892,
0.892 and 0.892, respectively. Through analysis, we find that Quora’s duplicate question
pairs accounted for only 37% of the training data. This indicates a significant imbalance in
the dataset, with many more non-paraphrased questions than paraphrased pairs, and 20%
of the questions appearing multiple times in different question pairs. In addition, we fur-
ther analyze the reasons affecting the performance of GIMM, First the training dataset is
noisy, i.e., there are pairs of questions labeled as non-paraphrased, where two questions
share almost all words and the exact same meaning. For example, a question pair con-
sisting of sentences ["What is solution for this question?", "What is solution to this ques-
tion?"] is labeled as non-paraphrased, although the question pair differ only in an insig-
nificant deactivation word. On the other hand, the number of co-occurring word pairs has
an impact on the identification of repetition problems. If there is a phenomenon that two
questions share almost all words, but the difference in a keyword causes the semantics
of the two sentences to be different. For example, the question consisting of the sentence
["How can you visualize a perfect 2-dimensional space”, " How can one visualize 4-dimen-
sional space"] is labeled as non-paraphrased. The mismatch in the keywords " you/one"
and "2-dimensional/4-dimensional" leads to a semantic inconsistency between the two sen-
tences. This type of phenomenon also has an impact on our model. Since GIMM constructs
an interaction graph in which the two sentences are densely connected. Structural infor-
mation is ambiguous during message passing in GNN. The representations of the nodes
learned in this way will be relatively similar in vector space. This is not conducive to our

Table 3 Experimental results on Model

the QQP dataset. Bolded values Accuracy

represent the.optimal or Siamese-LSTM [15] 0.826

best-performing results among

the selected baselines on the LD.C[16] 0.848

QQP dataset BERT-base [13] 0.883
PPBERT-base [13] 0.880
Unified Approach [14] 0.872
BiMPM [12] 0.882
ESIM [11] 0.853
DIIN [10] 0.891
RE2[17] 0.892
DITM [18] 0.892
GIMM (our) 0.892

@ Springer

Multimedia Tools and Applications

Table4 Experimental results Model Overall: Micro-F1 Precision Recall
on SKU
SOFTSVM [58] 0.59 0.58 0.59
DOTBILSTM [58] 0.75 0.75 0.75
GIMM (our) 0.8225 0.8290 0.8225

subsequent alignment and leads to degradation of the model performance. How to avoid
such phenomena and build high-quality interaction diagrams is one of the directions of our
future work.

In addition, we have conducted experiments on the SKU dataset. This dataset requires
the model to detect whether the questions are duplicated or not, but it also to considering
the correlation between questions.

Experiment II: Results on stack overflow The experimental results for the SKU data-
set are presented in Table 4. These include two models proposed by Shirani et al [58],
SOFTSVM, an SVM model for questions relevance tasks. SOFTSVM investigated the
impact of different features and different data choices on the final results. Another is DOT-
BILSTM, a BiLSTM-based model. DOTBILSTM used dot product to calculate the match-
ing degree of KUs after encoding by BiLSTM, which progressively learns and compares
the semantic representation of different parts of two KUs.

Through Table 4 we can see that the F1 values of SOFTSVM, DOTBILSTM on SKU
dataset are: 0.59, 0.75 respectively, and the F1 value of our GIMM is 0.8225, which is 7.25%
improvement compared to DOTBILSTM. In addition, it can be seen by Fig4 that the F1 value
of GIMM exceeds 0.8. Table 5 shows the predicted Micro-F1 scores for individual classes,
comparing the results for each. GIMM performed better than the baselines in predicting the
four categories duplication, direct, indirect, and isolated. The improvement is 13% in predict-
ing the Direct class, 8% in predicting the Indirect class, and 5% in predicting the Isolated
class. In particular, on the duplicate problem detection, GIMM achieves 0.9333 and 0.9206
for Micro-F1 in predicting the duplicate and indirect classes, respectively. It can also be seen
intuitively in Fig 5 that the F1 value of GIMM on the duplicate and indirect classes exceeds
0.9. This, to some extent, indicates that our model has a great advantage on a specific domain.
SKU provides a richer text description, which facilitates the model to more fully capture the
semantic meaning of what the sentence is trying to express. Therefore, the domain specificity

Fig.4 Results of the model on

the SKU dataset .

0.8
0.7
0.6
0.5

0.4

0.2
0.1
0

Overall: Micro-F1 Precision Recall

SOFTSVM [19] = DOTBILSTM [19] = GIMM (our)

@ Springer

Multimedia Tools and Applications

Table 5 Micro-F1 values for predicting individual classes

Model Overall: Micro-F1 duplicate direct indirect isolated
SOFTSVM [58] 0.59 0.53 0.57 0.44 0.79
DOTBILSTM [58] 0.75 0.92 0.55 0.67 0.87
GIMM (our) 0.8225 0.9333 0.6785 0.7536 0.9206

of the SKU, the co-occurrence of words between the two KUs is mainly in Terminology and
some Humping Variables (e.g., "IndexOutOfBoundsException"). To a certain extent, the
quality of the interaction graph of these two KUs is guaranteed. This combined with the local
structure of the graph to learn the node representation is more helpful for the model to make
good matching decisions. In the subsequent sections we will discuss these important compo-
nents that have an impact on the model to check the validity of each component Figs. 4 and 5.

4.3 Ablation study

To fully evaluate the performance of our model, we further analyze the main components
of GIMM to check the impact of these components on the model by removing a portion of
the components.

First, we analyze on the SKU dataset which part of the KU has the most impact on the
performance of the final model. The comparative experimental results are shown in Table 6.

We can see that using only the Body section of KU, the Precision, Recall, and Micro-F1
achieved the best results with an F1 value of 0.758, while the Answers section performed
poorly with an F1 value of 0.5887. Using only the data from the Title section of KU, its F1
value is 0.758. The performance of different parts of the KU varies widely in the model.
Different parts of the KU have different data sizes, Title having the smallest data size with
an average length of 9, Body with an average length of 97, and Answer with an average
length of 68. The obvious difference in their data size is one of the reasons for the vast dif-
ference in performance. Secondly, they have different functions in KUs. Title and Body are
descriptions of the questions, and their relevance in analyzing KUs plays a decisive role.
Answer is a response to a question, which is useful for question duplication detection.

Fig.5 Micro-F1 values of differ-
ent models in each class of SKU
dataset

© 00 o090 o oo
O N W B OO N ®

Overall: duplicate direct indirect isolated
Micro-F1

SOFTSVM [19] = DOTBILSTM [19] = GIMM (our)

@ Springer

Multimedia Tools and Applications

Table 6 Results of choosing

different text selections Model Overall: Micro-F1 Precision Recall
Title 0.7419 0.7478 0.7419
Body 0.7580 0.7629 0.7580
Answers 0.5887 0.6043 0.5887

Then, based on the model architecture, we further analyze the components that are
important to help GIMM achieves good performance. We are more interested in the effect
of the Title part of the question on the detection of duplicate questions. Because the gen-
eral problem is not described specifically, and also Title is a short text, the performance of
GIMM on the short text can be evaluated. The experimental results are shown in Table 7.

First, we verify the effect of the character embedding and word co-occurrence features
of the embedding layer on the model, and compare the F1 scores of the modified model
with those of the original model in the title section. Specifically, we remove both charac-
ter embedding and word co-occurrence features (-Char -IF). This setup demonstrates the
importance of adding other embedding features compared to traditional word embedding.
In addition, we also perform the following ablation studies, including (1) removing only
character embedding(-Char); (2) removing only word co-occurrence features (-IF). We
measure the extent to which these isolated modifications affect the model performance and
analyze their impact on the model.

Then the effect of Graph Interaction Layer (GIL) on the model is verified. Specifically
first remove the GIL(-GIL), which is obviously set up to highlight the impact of that layer
on the model. Importantly the main focus of this layer on the impact of the model is the
graph structure. Therefore, the influence of the choice of edges on the model when con-
structing the graph is further verified. This is done as follows: (4) remove the co-occur-
rence edge (- Co-occurrence edge) and keep only the phrase edge, so that the interaction
between the two sentences of the layer will be lost. (5) remove the phrase edge (- phrase
edge), where only the match between co-occurring words between sentences is considered.
Finally, we remove both character embedding, word co-occurrence features, and GIL, leav-
ing the model structure as a traditional attention-based interaction model.

Through Table 7, we can see that Micro-F1 decreases by 0.91% after removing the char-
acter embedding (-char). We find a large number of Humped Variables in the SKU dataset.
The Humped Variables here refer to words like "IndexOutOfBoundsException"”, "StrutsPre-
pareAndExecuteFilter", etc. Word embedding is not effective in providing additional infor-
mation for these out-of-vocabulary words (OOV). When the word co-occurrence feature
(- IF) is removed, we find that the model performance decreases by 0.77%. As observed

Table 7 Ablation experimental Model Micro-F1

results on SKU
GIMM(Title) 0.7419
(1)-Char 0.7328
(2)-IF 0.7342
(3)-Char - IF 0.7306
(4)- Co-occurrence edge 0.7282
(5)- phrase edge 0.7332
(6)- GIL 0.7250
(7)-Char - IF -GIL 0.7126

@ Springer

Multimedia Tools and Applications

by Gong et al [10] and Chen et al [59], the simple exact alignment function does help the
model to understand the sentences better. Removing both the character embedding and word
co-occurrence features decreases the model performance by 1.13%. It shows that adding
richer static embedding information to the embedding has a boosting effect on the PI model.
Because of the inclusion of rich and effective static features, the embedding vector contains
more semantic information and better sentence representations can be obtained.

Secondly, removing the Graph Interaction Layer decreases the F1 value by 1.7%. GIL
incorporates the local structure of the graph. Aggregate the contextual information of graph
nodes such that each node feature representation is influenced by neighbor nodes. Fine-
grained feature representations can be learned. There is a positive effect on the PI task. Con-
sidering the impact of edge relations on the model during graph construction. After remov-
ing co-occurring edges, the model performance decreases by 1.37%. GIMM considers the
interaction between identical words. The sentence vectors of two pairs of sentences will be
close to each other in the vector space when they meet pairs of sentences with essentially
the same expression form. At the same time, the model performance decreases by 0.87%
after we remove the phrase edges. As Pang et al [49] argue that different levels of interac-
tion allow more information to be obtained. For example, "bread and milk" and "milk and
bread", which semantically express the same meaning and show that considering the basic
features of the phrase can help with the PI task. Finally, we remove both character embed-
ding, word co-occurrence features, and GIL, the model performance decreases by 2.93%.

In addition, we also consider the impact of the number of layers of GNN in the Graph
Interaction Layer, and it can be seen that increasing the number of convolution layers has
little effect on the model. The experimental results are shown in Table 8. When the num-
ber of layers of the GNN is 2, it allows nodes to learn to get information about their 2nd
order neighbors. Since there are only two different edges in our interaction graph, and the
graph structure is sparse. The general single-layer convolution can already learn the con-
textual information including the information of the nodes connected by these two edges.
The increase in the number of layers of GNN does not capture more information and it also
makes model training more difficult.

4.4 Model analysis

In this section, we discuss the computational complexity of GIMM and compared it with
several classic algorithms. Specifically, we analyze the computational complexity of each
algorithm and provide some insights on the trade-off between efficiency and accuracy.

In Table 9, complexity refers to computational complexity, which we represent using
big O notation. We select the following benchmark models for comparison: Siamese-
LSTM, BERT-base, ESIM, RE2, and DITM. Siamese-LSTM and BERT-base are classic
representation-based models, while ESIM, RE2, and DITM are currently the best perform-
ing interaction-based models. The specific comparison results are shown in Table 9. Com-
plexity is the theoretical decoding computational complexity relative to sequence length

Table 8 Impact of the number of .

GCN network layers on the SKU- Model Micro-Fl

Title results GCN Number of layers = 1 0.7419
GCN Number of layers =2 0.7412

@ Springer

Multimedia Tools and Applications

Table 9 Complexity of GIMM

and comparing it with several Model Paremeters Complexity
classic algorithms Siamese-LSTM [15] 03M o)
BERT-base [13] 110M O(n)
ESIM [11] 43M o)
RE2[17] 2.8M Oon™)
DITM [18] 5.9M Oo(n'™)
GIMM 2.6M 0(e?)

n and interaction module size. Siamese-LSTM and BERT-base do not consider interac-
tion between sentences, so their computational complexity is O(n). In contrast, ESIM, RE2,
and DITM require the design of interaction modules. The interaction modules of RE2 and
DITM require multiple iterations to better capture the depth of interaction information
between text pairs, resulting in computational complexity of O(n™), where m is the num-
ber of iterations. The local inference modeling module of ESIM is accomplished through
the attention weight matrix and vector concatenation of the inference composition module,
resulting in computational complexity of O(n?). GIMM selects the information that needs
to interact through sliding windows, resulting in computational complexity of O(e*) where
e = n/w and w is the size of the sliding window.

In short, from the table above, it can be observed that the representation-based mod-
els have fewer parameters and lower algorithmic complexity. These models have a simple
and interpretable structure, but they fail to fully capture the interaction between sentences
and generally perform poorly. With the introduction of large-scale language models, the
representation-based models can better represent the semantic information of sentences
and improve model performance. However, these language models require a huge number
of parameters and corresponding computing resources, which have high device require-
ments. Interaction-based models need to design interaction modules to capture interactions
at different levels between two sentences, thereby improving model performance. However,
these models tend to be more complex, and their computational complexity is generally
O(n?) or higher.

In addition, from the table we can also see that GIMM is superior to state-of-the-art
methods in terms of model complexity and parameter quantity due to its carefully designed
interaction module. GIMM builds an interactive graph and uses sliding windows to reduce
the amount of node information needed for comparison, thereby learning rich and fine-
grained node representations while integrating local structure information of the graph to
fully capture the semantic information and interaction of words. Therefore, GIMM can
reduce the number of model parameters.

4.5 Case study

To visually demonstrate the validity of the model, we conduct a case study in the experi-
mental setting of Quora and SKU. Fig. 6 shows the effect of Graph-based Word Interaction
on the model, which makes each node representation influenced by neighbor nodes. The
attention weight matrix of the output results of Graph Interaction Layer is visualized by
using a heat map. It is worth noting that in this case study, the darker the color in the heat
map, the higher the attention weight.

@ Springer

Multimedia Tools and Applications

wihat
makes
eb -
5 -
the
best
vy
to
get
a
green -
card -
[0 1 0 I 1 ['
= c o o c ° o 8 ©
2 8 £ g ° = £
o o
e ‘8
java - case -
lang - insensitive
illegal -
liega search -
monitor -
vith -
state -
. predicate -
exception -
vait and 1
and iteria -
notify - api -
1 ’ I [1 1 l 1 1 1 ' {f
§ 2T £ % 8 5 ¥ S 4 A B & B B
= g 3 @ = ﬁ = & 8 = = 2
= 2] 2 2 3
o g 2
3 2 5
(c) (d)
how vihy
to does
get Jsp - .
the include -
) scmetimes{
ip |
cause -
address X
stackoverflowerrors -
of o] j
the google - -
connected app -
interface engine -
0 1 1 0) — I ' 0 1 0 1 I i 1 ' ' 0 1
java windows 7 reliably getting ipv4 netmask 2 c - 2 9 uow o 4 g x
28 §EEZ§EEDCE
? E -8 s &
v
5 E 3 %
8 B

(e) (H

Fig.6 Visualization results of the attention weight matrix for the example S, and S,:. The darker the color,
the larger the value. S, is on the y-axis and S, is on the x-axis

For the example in Fig. 6. (a), there are two input sentences S,: "How do I filter out
questions answers about bernie sanders trump and hillary clinton form my feed" and S,:
"How do I filter out trump and hillary related form my feed". where the set of co-occurring
words is {how, do, I, filter, out, trump, and, hillar, form, my, feed}. It can be seen in the dia-
gram that most of these words are aligned. Since our interaction diagram takes into account

@ Springer

Multimedia Tools and Applications

the phrase-level relations, the phrases between the two sentences here include "how do |
filter out", "trump and hillary", "form my feed ", which are aligned in a block form in the
diagram. Therefore, our method proves that these two sentences are paraphrased. This is
consistent with our hypothesis. For the example in Fig. 6 (b), there are two input sentences
S,: "what makes eb 5 the best way to get a green card" and S,: "how can following a vegan
diet lead to diarrhea". where the co-occurring words are {a, to}, which are aligned, but
there are no other aligned words or phrases between the two sentences. In addition, exam-
ples of each class in the SKU are visualized as follows: duplicate question in Fig. 6. (c);

direct question in Fig. 6. (d); indirect question in Fig. 6. (e); isolated question in Fig. 6. (f).

4.6 Parameter sensitivity

In this section, we evaluate the impact of sliding windows on GIMM. We validate it in the
experimental setting of Quora Question Pairs and SKU-Title. The maximum length of the
two input sentences is set to 59 after counting all samples of Quora Question Pairs. The
maximum length of the two input sentences is set to 15 after counting all samples of Title
in SKU data. We evaluate the impact of sliding windows on short texts with the results in
Fig. 7(a) and on medium-length texts with the results in Fig. 7(b).

With other parameters set to default values, we first consider whether the sliding win-
dow size has an optimal choice when the GCN number of layers is 1. As shown in Fig. 7,
on the SKU dataset, the model achieves the best performance when the sliding window
size is 15. On the Quora Question Pairs dataset, the model achieves the best performance
when the sliding window size is 8. By experimenting with different window lengths, we
once again confirmed the positive impact of the graph interaction layer on the model. Set-
ting a fixed-size sliding window to collect co-occurrence information is effective in utiliz-
ing global word co-occurrence information. Next, we considered the impact of the GCN
number of layers on the model when the sliding window size is set to the optimal value.
According to the results in Table 8, the model achieves the best performance when the
GNN layer is 1. Increasing the GNN layer cannot capture more information and may even
make model training more difficult.

In addition, we conducted a more in-depth analysis of the impact of the sliding win-
dow on the model. The sliding window affects our construction of the interaction graph.
As can be seen in the Fig.7, when the window is set to 0, our interaction graph will have
no edges. It is equivalent to removing the Graph Interaction Layer. SKU-Title’s F1 value
dropped to 0.7250, down 1.7%, and Quora Question Pairs’ ACC value dropped by 3.1%. It
is well illustrated that the layer has a positive influence on the PI task. Meanwhile, as the
length of the window becomes larger, the performance of the model reaches a high value
and decreases slowly after reaching a certain value. This is a very interesting phenomenon.
This shows that if the value of the window is set large enough, a word in the sentence can
find all words in the sentence that are identical to it. When there is a phenomenon that a
word corresponds to multiple co-occurring words, there is a certain impact on the perfor-
mance of the model. While the F1 value of SKU-Title becomes larger with the length of the
window, after reaching a certain value, the performance of the model reaches a high value
and then remains stable. This is because the text length of SKU-Title is short, and generally
the window is set to an intermediate value to obtain all co-occurring word pairs. Secondly,
the characteristics of the data in the SKU dataset mentioned earlier, the co-occurring word
pairs between the two KUs are mainly in terminology and some humped variables, which
again validates why GIMM achieves good performance on the SKU dataset. SKU has a

@ Springer

Multimedia Tools and Applications

QQP

0.900
0.890
0.880

3 0.870

go
0.860
0.850

0.840

Window
(a)

SKU

0.745
0.740

0.735

F1

0.730
0.725
0.720

0.715
0 1 2 3 4 5 6 7 8 9 10 15

Window

(b)

Fig. 7 (a) Impact of sliding window on Quora Question Pairs (b) Impact of sliding window on SKU-Title

smaller number of co-occurring word pairs compared to Quora, so the F1 value of SKU
does not drop as much as Quora as the window becomes larger.

In summary, we have again verified the positive effect of Graph Interaction Layer on the
model by experimentally varying the length of the window. To make use of global word co-
occurrence information, it is effective to set a fixed size sliding window to collect co-occurrence
information. Therefore, setting a proper window can help improve the model performance.

@ Springer

Multimedia Tools and Applications

5 Conclusion

In this paper, we explore a deep learning model based on graph interaction matching for PI
tasks. The model considers the interaction structure between sentence pairs and at the sin-
gle-sentence phrase level, combined with the GCN to capture the rich matching informa-
tion between sentence pairs. The experimental results show that our model can go beyond
the baselines. We also discuss the important components that help GIMM achieve good
performance and also came to some meaningful conclusions. (1) When there are a large
number of co-occurring word pairs in two sentences, the construction of the interaction
graph is densely connected, which leads to the structural information being ambiguous
during message passing. This has a bad impact on the model performance. (2) Character
embedding can provide additional information for domain-specific technical terms or some
fixed collocations that word embedding cannot handle out-of-vocabulary words (OOV).
It helps the model to understand special words which often determine whether a special
domain sentence pair is interpreted or not. (3) Setting an appropriate sliding window
allows each word in a sentence to be connected to an adjacent word in another sentence
that may share the relevant contextual meaning. As well, the dense connection of graphs
can be avoided. It helps to improve the model performance.

In our experimental evaluation of GIMM, we find that GIMM also has few limitations.
In the future work, we will make improvements in the direction of interaction graph con-
struction, edge selection, etc. Improve the quality of interaction graphs to face the chal-
lenge of GIMM on dense graphs. Also, graph-based integration layers may be applicable to
other tasks of sequence matching. This layer can be applied to Machine Translation, Natu-
ral Language Inference, Question Answering and other similar scenarios. In the meantime,
we will explore more on GCNs. Finally, due to the rich variability of natural language.
These phenomena occur when two pairs of sentences share almost all words but (1) dif-
fer in a keyword (2) differ in word order, resulting in semantic inconsistency between the
pairs. It means that simple methods involving only the word-to-word matching between
sentences and neglecting the higher-level abstractions will fail to capture the question
semantics and falsely label some question pairs. It is also an interesting work.

Funding This work was supported by the Science Foundation of Young and Middle-aged Academic and Tech-
nical Leaders of Yunnan under Grant No. 202205AC160040; Science Foundation of Yunnan Jinzhi Expert
Workstation under Grant No. 202205AF150006; Major Project of Yunnan Natural Science Foundation under
Grant No. 202302AE09002003; Science and Technology Project of Yunnan Power Grid Co., Ltd. under Grant
No.YNKIXM?20222254; the Postgraduate Research and Innovation Foundation of Yunnan University under
Grant No. 2021Z112; Science Foundation of “Knowledge-driven intelligent software engineering innovation
team”.

Data Availability The data associated with our study can be made available upon request. Please contact the
corresponding author Xuan Zhang (zhxuan@ynu.edu.cn).

Declarations
Conflicts of interest/Competing interests We confirm that this work is original and has either not been pub-
lished elsewhere, or is currently under consideration for publication elsewhere. None of the authors have any

competing interests in the manuscript.

Consent to participate All the authors are aware of this submission. They have reviewed and consented to
participate in this journal submission.

@ Springer

Multimedia Tools and Applications

References

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25

Xiao Han (2020) Hungarian layer: A novel interpretable neural layer for paraphrase identification.
Neural Netw 131:172-184

Callison-Burch, C, Koehn P, Osborne M (2006) Improved statistical machine translation using para-
phrases. In Proceedings of the human language technology conference of the NAACL, Main Confer-
ence, pp 17-24

Wallis P (1993) Information retrieval based on paraphrase. In Proceedings of pacling conference, pp
118-126

Das Arijit, Saha Diganta (2022) Deep learning based Bengali question answering system using seman-
tic textual similarity. Multimedia Tools Applic 81(1):589-613

Lukashenko R, Graudina V, Grundspenkis J (2007) Computer-based plagiarism detection methods and tools:
an overview. In Proceedings of the 2007 international conference on computer systems and technologies,
pp 1-6

Zhang Yun et al (2015) Multi-factor duplicate question detection in stack overflow.] Comput Sci Tech-
nol 30(5):981-997

Ahasanuzzaman M et al (2016) Mining duplicate questions of stack overflow. In 2016 IEEE/ACM 13th
working conference on mining software repositories (MSR), IEEE, pp 402—412

Hoogeveen D, Verspoor KM, Baldwin T (2015) CQADupStack: A benchmark data set for community
question-answering research. In Proceedings of the 20th australasian document computing symposium,
pp 1-8

Nakov P et al (2016) SemEval-2016 Task 3: Community Question Answering. In Proceedings of the
10th international workshop on semantic evaluation (SemEval-2016), pp 525-545

Gong Y, Luo H, Zhang J (2018) Natural language inference over interaction space. In International
conference on learning representations, pp 1-15

Chen Q et al (2017) Enhanced LSTM for natural language inference. In Proceedings of the 55th annual
meeting of the association for computational linguistics (volume 1: Long Papers), pp 1657-1668
Wang Z, Hamza W, Florian R (n.d.) Bilateral multi-perspective matching for natural language sen-
tences. In Proceedings of the 26th international joint conference on artificial intelligence (IJCAI-17),
pp 4144-4150

Arase Yuki, Tsujii Junichi (2021) Transfer fine-tuning of BERT with phrasal paraphrases. Comput
Speech Lang 66:101164

Palivela Hemant (2021) Optimization of paraphrase generation and identification using language
models in natural language processing. Int J Inform Manag Data Insights 1(2):100025

Mueller J, Thyagarajan A (2016) Siamese recurrent architectures for learning sentence similarity.
In Proceedings of the AAAI conference on artificial intelligence 30(1):2786-2792

Wang Z, Mi H, Ittycheriah A (2016) Sentence similarity learning by lexical decomposition and
composition. In Proceedings of COLING 2016, the 26th international conference on computational
linguistics: Technical papers, pp 1340-1349

Yang R, Zhang J, Gao X et al (2019) Simple and effective text matching with richer alignment
features[C]. In Proceedings of the 57th annual meeting of the association for computational linguis-
tics, pp 4699-4709

Yu Chuanming et al (2021) A simple and efficient text matching model based on deep interaction.
Inform Proc Manag 58(6):102738

Xint Y et al (2021) Label incorporated graph neural networks for text classification. In 2020 25th
international conference on pattern recognition (ICPR), IEEE, pp 8892-8898

Liu Y et al (2021) Deep attention diffusion graph neural networks for text classification. In Proceed-
ings of the 2021 conference on empirical methods in natural language processing, pp 8892—8898
Luo Y, Zhao H (2020) Bipartite flat-graph network for nested named entity recognition. In Proceed-
ings of the 58th annual meeting of the association for computational linguistics, pp 6408—-6418

Qu M et al (2020) Few-shot relation extraction via bayesian meta-learning on relation graphs. In
International conference on machine learning, PMLR, pp 7867-7876

Wu W et al (2021) BASS: Boosting abstractive summarization with unified semantic graph. In
Proceedings of the 59th annual meeting of the association for computational linguistics and the
11th international joint conference on natural language processing (volume 1: Long papers), pp
6052-6067

Peng H et al (2018) Large-scale hierarchical text classification with recursively regularized deep
graph-cnn. In Proceedings of the 2018 world wide web conference, pp 1063—-1072

Wu Zonghan et al (2020) A comprehensive survey on graph neural networks.". IEEE Trans Neural
Netw Learn Syst 32(1):4-24

Springer

Multimedia Tools and Applications

26

27.

28.

29.

30.

31.

32.

33.

34.

35.

36

37.

38.

39.

40.

41.

42.

43.

44,

45

46.

47.

48.

49.

50.

51.

52.

Wang Quan et al (2017) Knowledge graph embedding: A survey of approaches and applications.
IEEE Trans Knowl Data Eng 29(12):2724-2743

Henaff M, Bruna J, LeCun Y (2015) Deep convolutional networks on graph-structured data. arXiv
preprint arXiv:1506.05163

Xu K et al (2018) How powerful are graph neural networks? In International conference on learn-
ing representations, pp 1-17

Kipf TN, Welling M (2016) Semi-supervised classification with graph convolutional networks. In
International conference on learning representations, pp 1-14

Zhang Y, Yu X, Cui Z et al (2020) Every document owns its structure: Inductive text classification
via graph neural networks. In Proceedings of the 58th annual meeting of the association for compu-
tational linguistics, pp 334-339

Peng H, Li J, Wang S et al (2019) Hierarchical taxonomy-aware and attentional graph capsule RCNN's
for large-scale multi-label text classification[J]. IEEE Trans Knowl Data Eng 33(6):2505-2519

Yao L, Mao C, Luo Y (2019) Graph convolutional networks for text classification. In Proceedings
of the AAAI Conference on artificial intelligence 33(01):7370-7377

Tekli Joe et al (2018) Full-fledged semantic indexing and querying model designed for seamless
integration in legacy RDBMS.". Data Knowl Eng 117:133-173

Tekli Joe (2016) An overview on xml semantic disambiguation from unstructured text to semi-
structured data: Background, applications, and ongoing challenges. IEEE Trans Knowl Data Eng
28(6):1383-1407

Viji D, Revathy S (2022) A hybrid approach of Weighted Fine-Tuned BERT extraction with
deep Siamese Bi-LSTM model for semantic text similarity identification. Multimed Tools
Appl 81(5):6131-6157

Lai H et al (2020) Bi-directional attention comparison for semantic sentence matching. Multimedia
Tools Applic 79(21):14609-14624

Serban I et al (2016) Building end-to-end dialogue systems using generative hierarchical neural
network models. In Proceedings of the AAAI conference on artificial intelligence 30(1):3776-3783
Ramos J (2003) Using tf-idf to determine word relevance in document queries. In Proceedings of
the first instructional conference on machine learning vol. 242(1)

Robertson S, Zaragoza H (2009) The probabilistic relevance framework: BM25 and beyond. Now
Publishers Inc. 3(4):333-389

Yujian Li, Bo Liu (2007) A normalized Levenshtein distance metric. IEEE Trans Pattern Anal
Mach Intell 29(6):1091-1095

Huang P-S, et al (2013) Learning deep structured semantic models for web search using clickthrough data.
In Proceedings of the 22nd ACM international conference on information & knowledge management, pp
2333-2338

Feng M et al (2015) Applying deep learning to answer selection: A study and an open task. In 2015
IEEE Workshop on automatic speech recognition and understanding (ASRU), IEEE, pp 813-820
Conneau A et al (2017) Supervised learning of universal sentence representations from natural lan-
guage inference data. In Proceedings of the 2017 Conference on empirical methods in natural language
processing, pp 670-680

Wang H et al (2021) Knowledge-guided paraphrase identification. Findings of the association for com-
putational linguistics: EMNLP 2021, pp 843-853

K Leilei et al (2020) A deep paraphrase identification model interacting semantics with syntax. Com-
plexity 2020:1-14

Mohamed Muhidin, Oussalah Mourad (2020) A hybrid approach for paraphrase identification based on
knowledge-enriched semantic heuristics. Lang Resources Eval 54:457—485

Chen Qidong, Sun Jun, Zhao Yuan (2021) A Novel Architecture with Separate Comparison and Inter-
action Modules for Chinese Semantic Sentence Matching. Neural Process Lett 53:3677-3692

Chang G, Wang W, Hu S (2022) MatchACNN: A multi-granularity deep matching model. Neural Pro-
cess Lett 1-20

Pang L et al (2016) Text matching as image recognition. In Proceedings of the AAAI conference on
artificial intelligence, vol. 30(1), pp 2793-2799

Ling W et al (2015) Finding function in form: Compositional character models for open vocabulary
word representation. In Proceedings of the 2015 Conference on empirical methods in natural language
processing, pp 1520-1530

Pennington J, Socher R, Manning C (2014) Glove: Global vectors for word representation. In Confer-
ence on empirical methods in natural language processing, pp. 1520-1530

Hochreiter Sepp, Schmidhuber Jirgen (1997) Long short-term memory. Neural Comput
9(8):1735-1780

@ Springer

Multimedia Tools and Applications

53. Parikh AP et al (2016) A decomposable attention model for natural language inference. In Proceedings
of the 2016 conference on empirical methods in natural language processing (EMNLP), pp 2249-2255

54. Mou L, Men R, Li G et al (2016) Natural language inference by tree-based convolution and heuristic
matching[C]. In Proceedings of the 54th annual meeting of the association for computational linguis-
tics (volume 2: Short papers), pp 130-136

55. Minaee S, Kalchbrenner N, Cambria E et al (2021) Deep learning—based text classification: a compre-
hensive review[J]. ACM Comput Surv (CSUR) 54(3):1-40

56. Nikolentzos G, Tixier A, Vazirgiannis M (2020) Message passing attention networks for document
understanding[C]. Proc AAAI Conf Artif Intell 34(05):8544-8551

57. Shankar I, Nikhil D, Kornel C (2017) First quora dataset release: Question Pairs. In https://quoradata.
quora.com/First-Quora-Dataset-Release-Question-Pairs

58. Amirreza S et al (2019) Question relatedness on stack overflow: the task, dataset, and corpus-inspired
models. In Proceedings of the AAAI reasoning for complex question answering workshop, pp 1-9

59. Chen D, Fisch A, Weston J et al (2017) Reading wikipedia to answer open-domain questions. In 55th
annual meeting of the association for computational linguistics, ACL 2017, pp 1870-1879

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs
https://quoradata.quora.com/First-Quora-Dataset-Release-Question-Pairs

	GIMM: A graph convolutional network-based paraphrase identification model to detecting duplicate questions in QA communities
	Abstract
	1 Introduction
	2 Related work
	2.1 Graph neural network
	2.2 Text matching

	3 Method
	3.1 Task definition
	3.2 Model overview
	3.3 Graph-based interaction

	4 Experiments
	4.1 Dataset and experiment settings
	4.2 Comparison
	4.3 Ablation study
	4.4 Model analysis
	4.5 Case study
	4.6 Parameter sensitivity

	5 Conclusion
	References

