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Abstract
Fine-grained entity typing is crucial to improving the efficiency of research in the field of 
cybersecurity. However, modality limitations and type-labeling hierarchy complexity limit 
the construction of fine-grained entity typing datasets and the performance of related mod-
els. Therefore, in this paper, we constructed a fine-grained entity typing dataset based on 
multimodal information from the cybersecurity literatures and design a multimodal repre-
sentation learning model based on it. Specifically, we design and introduce a new bench-
mark dataset called CySets to facilitate the study of new tasks and train a novel multimodal 
representation learning model called Cyst-MMET with multitask objectives. The model 
utilizes multimodal knowledge from literature and external to unify visual and textual 
representations by eliminating visual noise through a multi-level fusion encoder, thereby 
alleviating data bottlenecks and long-tail problems in the fine-grained entity typing task. 
Experimental results show that CySets have sharper hierarchies and more diverse labels 
than the existing datasets. Across all datasets, our model achieves state-of-the-art or domi-
nant performance (3%), demonstrating that the model is effective in predicting entity types 
at different granularities.
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1 Introduction

Entity typing, which learns text features and extracts meaningful information for clas-
sifying entity classes, is a burgeoning research area in natural language processing 
(NLP). Entity labeling techniques were utilized in early work on entity typing [1, 2]. 
To label entities, early work concentrated on coarse-grained entity typing tasks, such 
as named entity recognition (NER) [3]. However, in recent years, the development of 
deep learning and neural networks has prompted researchers to shift their attention from 
coarse-grained to fine-grained entity typing (FET) tasks. According to the given entity 
mentions and the matching contexts, FET seeks to categorize entity mentions into fine-
grained semantic label sets. Considering the example in Fig. 1, for the context “[RSA] 
cryptosystem is used in many signature algorithms”, the mention of “RSA” in the tra-
ditional NER task would type it as Asymmetric. However, under a FET scheme, it may 
be classified as a type label set {/Encryption, Security Algorithm, /Asymmetric crypto-
system}. Many NLP tasks can benefit from providing fine-grained semantic labels, such 
as entity relationship extraction [4, 5], knowledge base construction and extension [6], 
entity linking [7], and question and answer [8].

The fundamental challenge of FET comes from data bottlenecks and complex sets 
of fine-grained entity hierarchy labels, which further limits the performance of the FET 
model.

First, entity representation is affected by modal limitations. The FET models pro-
posed in recent years [9–11] focus on textual information to accomplish the entity typ-
ing task. However, the information provided by a single modality is limited and possibly 
misleading, which seriously affects the performance of FET models. In particular, the 

Fig. 1  Entity hierarchy and FET task. Given entity mentions and their contexts, the set of possible type 
labels is predicted, where the yellow boxes indicate for the mentions and context, the set of candidate enti-
ties generated by distant supervision, and green indicates the relatively correct entity labels, while red indi-
cates the wrong labels
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use of distant supervised methods introduces noise labels in the training data, i.e., all 
possible types of entities are assigned to its mention. However, mentions are free to 
assume different types depending on their contexts. As shown in Fig.  2a, considering 
the type hierarchy sampled from the CySets, for the mention of “cryptosystem” in the 
sentence the traditional FET model can only recognize {Security Algorithm, /Signature, 
/Asymmetric}, but the latent type /RSA cannot be inferred from the context of the men-
tion. It is not inferred from the mentioned context and is therefore considered a “noisy” 
label. However, by matching the image information with the text, we can find the image 
region “RSA Algorithm Flow” (the red area in Fig. 2a) associated with the text informa-
tion in the image and thus infer the type label /RSA.

It is worth mentioning that FET has faced significant difficulties in modeling the type 
hierarchy of fine-grained entities in the presence of noisy labels. Previous research has 
mostly relied on heuristics, for example, Xu [12] employed reinforcement learning mod-
els to learn how to describe type hierarchies, while Gillick [13] used a set of heuristics to 
eliminate noisy training data. However, due to the reduced amount of training data, such 
methods lead to performance degradation and are difficult to fundamentally enhance the 
breadth and accuracy of entity recognition. For example, in the text description in Fig. 2b, 
it is difficult to determine the fine-grained type of the entity [he] because it may describe 
any character role such as an athlete, an adult, or a teacher. In addition, in the above exam-
ple, if auxiliary information such as images were missing, the existing model like Ling [16] 
would assign pronouns such as [he] to the category of “PER”. We call this the “long tail 
problem,” where too many type labels are assigned to one category. This problem can be 
solved by using multimodal information such as images as additional inputs to enhance the 
text representation and improve the accuracy and breadth of entity recognition.

Second, entities are represented in a fine-grained manner [14]. In multimodal representa-
tion learning models, entities are usually represented by specific words or image regions in 
the text. However, if recognition methods treat each word and image region equally, simply 
connecting different modal representations may ignore the interactions between modalities. 
Lin [10] used a hybrid classification approach beyond binary correlation to exploit the type 
interdependence of potential type representations. Based on this, Sun [15] used Bi-LSTM to 
connect chemical structure graph and textual description representations to accomplish the 
FET task. Unlike its shallow modal interactions, we construct a fusion encoder to align feature 

Fig. 2  Example of multimodal enhanced entity representation
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representations of different modalities, going beyond the traditional concept of named entities, 
with some recognition of pronouns, etc., to solve the problem of modal contradictions due 
to irrelevant visual noise. As in Fig. 2b, the area of the image where the “person” is located 
should match the contextual mention [he]. The mention [he] should, in theory, have a low 
similarity to other parts of the image and a high resemblance to the area of the image where 
the “person” is located. However, due to modal heterogeneity, the result may be just the oppo-
site. This results in a semantic gap between different modalities, affecting entity recognition 
performance.

Finally, building domain FET datasets is challenging. Domain datasets are complex and 
require rich prior knowledge compared to datasets that contain mainly basic entity types such 
as PER/player, LOC/company, etc. This can be seen in existing datasets where the label dis-
tribution of FET datasets is heavily skewed towards coarse-grained types. For example, the 
annotators of the OntoNotes [13] dataset labeled about half of the mentions as “other” because 
they could not find a suitable type for them. The /PERSON label, on the other hand, covers 
more than 40% of the cases in the FIGER [16] dataset (see 4.1 for detailed analysis). Weische-
del [17] annotated 2311 Wall Street Journal articles from Treebank-2 (LDC95T7) to construct 
the BBN dataset. However, there are just two levels of hierarchy in the BBN sample. Com-
pared with previous FET datasets, the label distribution in CySets, our constructed dataset 
based on literatures in the cybersecurity domain, is more diverse and fine-grained, with a more 
distinct type hierarchy relationship.

In this paper, we propose a multimodal representation learning approach that includes a 
multi-level fusion encoder. As we show in our experimental results, existing models may face 
challenges in understanding cybersecurity mentions based purely on a single modal contextual 
representation. However, by mastering various modal features, the proposed multimodal rep-
resentation learning approach can be applied to comprehend entities more fully. In summary, 
our contributions are summarized as follows:

1. Based on scientific literatures, we constructed the first manually annotated fine-grained 
cybersecurity entity typing dataset, with a stronger hierarchical structure and a more 
diverse label distribution.

2. A brand-new model called Cyst-MMET is proposed and evaluated, which can enrich 
entity mentions by multimodal knowledge representation learning and solve the data 
bottleneck and long-tail problems caused by fine-grained label sets.

3. A multi-level fusion encoder is designed and implemented. Through token-wise similar-
ity calculation, fine-grained graphical matching is obtained to solve the semantic gap 
between different modalities and alleviate the problem of irrelevant visual noise, so as to 
learn a unified representation of different modalities. Experiments on all datasets show 
that our model achieves state-of-the-art (SOTA) or dominant performance (3%).

The rest of the paper is structured as follows. Section 2 reviews relevant existing models. 
Section 3 describes the proposed model in detail. Section 4 discusses the experimental setup 
and a detailed performance comparison with existing models, followed by concluding remarks 
in Section 5.
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2  Related work

Because of its intelligence, automated recognition, and robust data analysis capabili-
ties, artificial intelligence (AI) collaborates deeply with cybersecurity technologies and 
applications as it advances to the cognitive intelligence stage [18]. Entity typing is a 
typical task in AI and plays a key role in building knowledge hierarchy relationships 
in the security domain. The literatures [19–21] employ cybersecurity domain knowl-
edge to analyze cybersecurity threats, such as building knowledge graphs from textual 
descriptions of cyber-attacks to better correlate data. However, most of these systems 
can only be seen as a black box to users. To improve our understanding of such systems, 
adversarial machine learning approaches can be used. The main features are detected by 
analyzing the extent of such changes, which helps in identifying the main reasons for 
misclassification. Sharma[46]presented approach has obtained satisfactory results that 
accurately explains the reasons for misclassifications.

Conducting Fine-grained entity typing (FET) task studies helps researchers to build a 
hierarchical body of knowledge and improve the effectiveness of learning. And it holds 
great promise in research areas of NLP tasks [22], such as link prediction and knowl-
edge base construction. Nasiri et  al. [50] proposed a novel Robust Graph Regulariza-
tion Nonnegative Matrix Factorization for Attributed Networks (RGNMF-AN), which 
models not only the topology structure of networks but also their node attributes for 
direct link prediction. Different from FET, traditional NER is treated as a sequential 
labeling task [23, 44], limiting the number of entity classes. ASRNN [43] is a powerful 
tool for sequence labeling tasks that can effectively incorporate contextual information 
using attention mechanisms. The self-attention-based conditional random fields (CRF) 
latent variables model [45] for sequence labeling is a type of machine learning algo-
rithm that is used to predict the labels of sequential data. However, the entity bounda-
ries of the FET task are usually predefined, and it is generally treated as a hierarchical 
multi-label classification task. As a result, the former entity type identification approach 
clearly limits the breadth of information that can be extracted for entities. For example, 
the type of Security Algorithm can be subdivided into Encryption and Asymmetric sub-
types. Researchers investigated entity typing tasks in various scenarios. Lin et al. [47] 
proposed a neural-encoded mention-hypergraph (NEMH) model to use hypergraph to 
model overlapping or nested structure mentions and use neural networks to extract fea-
tures for hypergraph automatically which can effectively capture nested mention entities 
with unlimited length. Yao et al. [26] studied lexicon-level prediction, i.e., assigning a 
corresponding entity category to a noun phrase in the absence of context. Schütze [27] 
studied corpus-level prediction. Different from them, we focus on selecting the appro-
priate set of label types for mentions in a particular sentence.

Recent work has introduced fine-grained type ontologies to address the problem of 
large-scale fine-grained set of entity labels [24]. FIGER [16] defined 112 entity types 
based on Freebase (1  K), merging the categories with fewer entities. However, there 
are some problems with the FIGER [16] dataset, such as the extensive training set but 
only over 500 samples in the test set. As a result, OntoNotes [13] built a clearer hier-
archy between entity categories based on this. Murty et  al. [25] proposed TypeNet, a 
dataset with a deeper hierarchical structure that contains more than 1900 entity catego-
ries and filters some categories with fewer entities, based on WordNet (16 K). They do, 
however, focus on named entities, and data collection is challenging. In contrast, our 
ontology is based on external knowledge bases and literatures, contains nouns (and even 
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pronouns, as shown in Fig. 2b), goes beyond the traditional notions of named entities, 
and has a more diverse and fine-grained distribution of labels with domain expertise and 
credibility.

However, fine-grained label sets also lead to data bottlenecks and long-tail problems. In 
recent years, several approaches [28–30] have attempted to address this problem by intro-
ducing Zero-shot or Few-shot learning methods or data enhancement by removing label 
noise [31, 32]. Lv et al. [48] presented fine-grained Graph Auxiliary augmentation (GAU) 
model which trains the primary task together with an automatically created auxiliary task. 
And an auxiliary augmentation strategy was designed to enlarge the labeled set for the 
auxiliary task by utilizing the pseudo-labels of the primary task. This approach is used to 
solve the problem of degradation of classification models due to low training samples. Like 
the literature [33], we use an external knowledge base to introduce more external knowl-
edge. In contrast, we consider knowledge from other modalities as the supplements, such 
as images in scientific literatures. Sun et al. [34] used chemical structure maps as auxiliary 
information for type identification of organics, while Azadifar et al. [49] proposed a novel 
graph theoretic-based gene selection method which was developed for cancer diagnosis. In 
this proposed method the optimal number of the final gene set was determined automati-
cally. In line with previous studies [23, 34, 41], we utilize multimodal representations to 
alleviate the problem of unimodal information limitation, thus enriching entity mentions 
and providing context-sensitive fine-grained type labels.

3  Method

3.1  Task and data

Due to the domain’s complexity and the research problem’s cutting-edge nature, there is no 
standard dataset available for fine-grained cybersecurity entity typing. To this end, we col-
lected recent cybersecurity research papers from the forthcoming paper platform WoS(Web 
of Science)1and annotated a new dataset, CySets, based on them.

We begin by obtaining image and text pairs from the literatures, with the text extracted 
using a string-matching method based on keywords and templates. The image and text 
sample pairs are created by matching the image numbers in the text with the image order 
in the literature. The text description primarily consists of a description and analysis of the 
information in the images’ captions and texts below the images. The co-reference pars-
ing system then selects mentions by extracting the longest noun phrase [35]. Finally, we 
provided image text pairs and entity mentions to five Ph.D. and four Master students in 
cybersecurity/information security majors and asked them to annotate the types of entities. 
To construct a hierarchical set of fine-grained entities, we require annotators to include a 
coarse-grained type (e.g., Security Algorithm, Asset, Threat) and at least one specific type 
(e.g., Key Exchange, Resource, Malware) for each mention. To improve consistency and 
accuracy, we had students from different grade levels annotate each selected scientific text 
twice, taking advantage of the annotators’ prior knowledge. We defined F1 as a dataset 
evaluation metric to handle disagreement when calculating annotation alignment in two 
passes. We discarded the document as an “uncertain document” when the F1 score was 

1 https:// webof scien ce. com/

https://webofscience.com/
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less than a certain threshold. We chose a corresponding number of documents from the 
corpus at random to be re-annotated as a supplement. However, it is undeniable that cyber-
security knowledge is heterogeneous, and even annotators with a cybersecurity background 
may be unfamiliar with emerging or old relevant knowledge. To improve consistency even 
further, the final type set contains only 4/5 types annotated by annotators. We built the 
CySets development and test sets using the manual annotation approach described above.

In addition, we construct the training set of CySets by distant supervision according to 
Fig. 1. Common types from the cybersecurity literatures are first collected to construct a 
word list and then linked to Wikipedia2 for expansion to improve the entity and type cov-
erage of the knowledge base. Specifically, we construct a type tree to represent the entity 
types, and a complete set of fine-grained labeled types is the path from the root to the 
leaves in the tree structure, e.g. (Asset, /Resource, . /Memory).3 We constructed the final 
data with more diverse labels and a sharper hierarchy than traditional datasets [13, 16]. The 
cleaned dataset data is shown in Table 1. However, CySets are not comprehensive, which 
makes the evaluation important (see Section 4 for details).

3.2  Model architecture

Understanding cybersecurity literatures is an interesting challenge from a NLP perspec-
tive. Our main idea to tackle this challenge is to perform multimodal representation learn-
ing and introduce an external knowledge base containing multimodal representations of 
security entities in cyberspace, such as algorithm principles, protocol flows, and natural 
language descriptions. Since different modalities of information are represented differently, 
we propose a Transformer-based multilevel fusion encoder to learn a unified multimodal 
representation to address the semantic gap between modalities. As shown in Fig.  3, the 
model can enrich entity mentions, enhance entity recognition, solve the data bottleneck and 
long-tail problems caused by fine-grained label sets, and alleviate the problem of irrelevant 
visual noise.

Table 1  Statistics for the CySets 
Dataset

Model Train Dev Test

Proportion 60% 20% 20%
Sentence 7745 2653 2961
Mention 8932 4007 5438
Level Num. Exam.
Coarse-type 12 Asset
Fine-grained 37 /Resource
Ultra-fine 28 ./Memory
Other 20 .//RSA

2 https:// en. wikip edia. org/ wiki/ Compu ter_ secur ity
3 In this paper, “/” denotes entity types at the Fine-grained level in CySets, “./“denotes the entity type at the 
Ultra-fine level in CySets

https://en.wikipedia.org/wiki/Computer_security
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Context representation and mention representation In the FET task, contextual infor-
mation is important. Determining entity subtypes without taking contextual information 
into account may introduce noise and lead to annotation ambiguity. Again, taking Fig. 2a 
as an example, we can quickly learn from the contextual semantics that [signature] refers to 
a cryptographic “signature algorithm” rather than a real-life “handwritten signature,” and 
thus we can determine that the subtype is probably RSA. Additionally, to address the OOV 
(Out of Vocabulary) problem, we use character-level embeddings in addition to the conven-
tional word-level embedding. We employ the contextualized word representation ELMo 
[36] in place of earlier neural network models, which often use fixed-word embeddings, 
to conduct a fair comparison with some baseline models (e.g., LTR [11]). For encoding, 
we form the input instance as η，mark the entity with [E1], and end up with a sentence 
that looks like Eq. (1). In Eq. 1, a set refers to a collection of input tokens that are passed 
through the neural network model for processing. The CLS and SEP tokens are special 
tokens used in SciBERT [40] to indicate the beginning and ending of a sentence, respec-
tively. The CLS token is added at the beginning of each input set to represent the classifi-
cation task, while the SEP token is added at the ending of each set to separate it from the 
next set in the input sequence. The CLS and SEP tokens help SciBERT [40] to distinguish 
between different input sets and enable it to generate meaningful representations of the 
inputs that capture the context and meaning of the text.

where m denotes the mention word and ηi denotes the context. Then, we feed η into SciB-
ERT [40] and obtain the source hidden state φ = {φ1…φn}, where φ ∈ ℝd, d is the dimen-
sion of the hidden state. Finally, using the [CLS]-labeled hidden vectors as sentence 
embeddings, we obtain the representation vectors of context and mentions as Vcm.

(1)� =
{

[CLS], �1,…
[

E1

]

,m1,… ,mk,
[

E2

]

,… , �n, [SEP]
}

Fig. 3  Architecture of Cyst-MMET. This is a unified multimodal learning framework which includes three 
main components: text encoder, visual encoder, and fusion encoder. Different modal features are extracted 
separately and fed into the fusion encoder to obtain the unified representation vector
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3.3  Multi‑level fusion encoder

Inspired by CLIP [37] and Xu [23], we propose a multi-level fusion encoder to bridge the 
semantic gap caused by different modal representations. As shown in Fig. 4, we design a 
coarse-grained interaction module(Module1) and a fine-grained fusion module(Module2) 
to preemptively reduce the modal heterogeneity and mitigate the noise of irrelevant visual 
elements, respectively.

Specifically, we first redefine the calculation of multi-head attention at every layer to pre-
reduce the modality heterogeneity, which is performed on the hybrid keys and values. We 

Fig. 4  Fusion encoder framework. It mainly consists of two parts: Module 1 is a coarse-grained interaction 
module, and Module 2 is a fine-grained fusion module
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reformat the equations as Eqs.(2) and (3),4 where λ(xv) denotes the scalar for the sum of nor-
malized attention weights on the textual key and value vectors, as shown in Eq. (4). The over-
all sense of the interaction mechanism reduces the original visual attention probabilities and 
redistributes the remaining attention probability mass λ to focus on textual attention. Cyst-
MMET learns coarse-grained modal fusion to minimize modal heterogeneity beforehand by 
applying it to the attention calculation of hidden visual states and hidden textual states.

The wt
q
 represents the query vector for text, which is obtained by multiplying the query 

matrix Q by the input vector xt . The headMv represents the output of the multi-head attention 
module Mv for visual vector, which takes as the input of the query vector wt

q
and the key-value 

pairs ( wt
k
 , wt

v
 ) in the sequence. λ(xv) represents a non-linear transformation applied to the input 

vectorxv, which is used to calculate the key and value vectors for the attention mechanism.

The basic Transformer [38] configuration is used in this paper, where Qstands for the 
query mapping, (K, V)for the key-value pair, xvfor the visual feature vector, and xtfor the 
text feature vector, which are the output features corresponding to the interaction module. 
It is worth mentioning that the text feature vector consists of the text described in the litera-
ture and the text from the external knowledge base as Eq. (5), and each of them contains a 
contextual representation and a mention representation:

where Vb stands for text feature vector of external knowledge base, Xt stands for feature 
vector of all text.

To mitigate the detrimental effect of noise, we calculate the similarity matrix of all text 
tokens as Eq. (6). We use a token-wise similarity calculation, as opposed to the CLIP [37] 
global similarity calculation, to capture fine-grained matching and localization of images with 
text at the token level. We then apply a SoftMax function to the similarity matrix of the i-th 
text token and use the average token aggregator of visual tokens in the image as Eq. (7), where 
Aggi denotes the similarity-aware aggregated visual representation for i-th textual token.

(2)headMt = Attn
(

xtwt
q
, xtwt

k
, xtwt

v

)

(3)

headMv = softmax
(

Qv,
[

Kv

)

[

Vv

Vt

]

=
(

1 − �(xv)Attn
(

Qv,Kv,Vv

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
standard

+ �(xv)Attn
(

Qv,Kt,Vt

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
cross−modal

(4)𝜆(xv) =

∑

i exp
�

QvK
⊤
t

�

i
∑

i exp
�

QvK
⊤
t

�

i
+
∑

j exp
�

QvK
⊤
v

�

j

(5)Xt =
[

Vcm ∶ Vb

]

(6)S = xt(xv)
T

(7)Aggi(x
v) = softmax

(

Si
)

xv

4 The derivation process of the attention mechanism, only the key steps are written. Without loss of gener-
ality, the SoftMax scaling factor 

√

d is ignored.
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We also propose merging the similarity-aware aggregated visual hidden states into the 
text hidden states in the feed forward neural network layer (FFNN) and modifying the 
FFNN process’s computation to Eq. (8). W3 in Eq. (8)represent the new added parameters 
for aggregated visual hidden states. The similarity matrix shows the nearest image patch 
for each text token. By inserting the aggregated visual representation based on similarity 
into the text-side FFNN algorithm to reduce the noise of unrelated entity images, a fine-
grained alignment between image patch and text tokens is learned.

3.4  Label predictions

We learn the type label embedding matrix with various granularities to evaluate our dataset 
in greater depth. The predicted type set has two cases: the label types with average maxi-
mum probability when both probabilities are less than 0.5 and the label types with the fore-
casted probability of more than 0.5. The threshold is set at 0.5.

In the above Eqs. (9) and (10), where n is the number of labels in the prediction space, 
d is the dimensionality of g, g is the final representation, and Xmdenotes the fused multi-
modal representation. The label embedding matrix Wt consists of three granularity label 
sub-matrices of “Coarse-type, Fine-grained, Ultra-fine”, respectively, WC, WF, WU.

3.5  Multi‑task objective

Previous studies [9, 16] primarily employed special hinge-loss to improve noise or incom-
plete supervision robustness. Instead, we propose a multi-task objective that better reflects 
the training dataset’s fine-grained features. Instead of updating all labels for each example, 
we divide them into three granularities (Coarse-type, Fine-grained, Ultra-fine), with dif-
ferent granularities having different Lgranularity training objectives. And we only update the 
labels in the granularity category with at least one label. Specifically, the training goal is 
to reduce L , as shown in Eqs. (11) and (12). In Eq. 11, the loss function is defined as the 
cross-entropy loss between the predicted class probabilities ŷi and the true class labels yi 
for each input example i in the training set. In Eq. 12, the loss function is defined as multi-
task objective training for three granularities.

The function Ψgranularity(t) checks whether a given granularity′s target vector t contains 
the entity type. Here, t is the target vector for each granularity.

The overall process for the FET task in our model is shown in Algorithm 1. The inputs 
mainly include Multiple datasets D  such as CySets, OntoNotes, BBN, FIGER; the batch 

(8)FFNN
(

xt
)

= RELU
(

xtW1 + b1 + Aggi(x
v)W3

)

W2 + b2

(9)y = �
(

FFNN
(

Wtg
))

Wt ∈ ℝ
n×d

(10)g =
[

Xt ∶ Xv ∶ Xm

]

(11)L = −
∑

log
(

yi
)

+
(

1 − ti
)

⋅ log
(

1 − yi
)

(12)La = LC ⋅ΨC(t) + LF ⋅ΨF(t) + LU ⋅ΨU(t)
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size b, the temperature parameter  τ,the learning rate α,the score function ψ(·). Our goal 
is to predict the type of entity based on the input entity mentions and context. Our model 
goes through three main processes. Firstly, text and visual features are extracted, where text 
features are extracted via SciBERT and visual features are extracted via a visual coder. The 
extracted features are then fused, which are achieved by fusing the coarse-grained align-
ment module and the fine-grained fusion module of the encoder. Finally the possible entity 
types are predicted from the obtained uniform representation.

Algorithm 1  The overall process for the FET task in our model
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For the text, we use pre-trained SciBERT to encode the context and mentions to obtain 
the feature vectors of the two respectively, which are connected to form the text feature 
vector. The visual coding Resnet is used to encode the image regions. The same settings 
are used for the external knowledge base and the text in the literature. The multilevel fusion 
encoder takes the output of the text encoder and the visual coder as input, and the modal 
heterogeneity is pre-reduced by Module1, and fine-grained fusion is done by Module2 (see 
details in 3.3). Also, we set the threshold 0.5 to predict the label set.

4  Experiments

4.1  Settings

Datasets In addition to the experimental analysis of the dataset CySets constructed in 
this paper, we chose three standard fine-grained typing datasets, OntoNotes [13], FIGER 
[16], and BBN [17], to evaluate the performance of the proposed model Cyst-MMET.5The 
original version in OntoNotes[13]contains 25 K/2 K/9 K training/development/test data, 89 
categories, and 2.7 labels per sample on average. The classification system is divided into 
three layers: person (first), artist (second), and actor (third). We used Shimaoka’s [9] train-
ing, development, and test sets. The FIGER dataset, like OntoNotes [13], was created by 
merging categories with fewer entities from Freebase, and it includes 2.7 million automati-
cally labeled training instances from Wikipedia and 434 manually labeled sentences from 
news reports. We partitioned the dataset similarly to Shimaoka [9]. The Wall Street Journal 
text corpus of one million words (LDC95T7) was annotated with a two-level hierarchy 
using the BBN [17] dataset to construct a corpus of entity types with a core reference of 
BBN nouns. We followed Ren and Zhang’s methods [38, 39] for partitioning the datasets.

Baselines 

1) ATTENTIVE [9]: Entity mentions and contexts are modeled separately to obtain the 
mention representation and the context representation. Where the entity mentions rep-
resentation is directly averaged, the contextual representation uses a Bi-LSTM and 
fixed attention mechanism, and the spliced features are sent to the MLP(Multilayer 
Perceptron) for category prediction. It can be seen that this approach does not consider 
the problem of data noise caused by distant supervision.

2) BERT-CRF [39]: It is a multi-layer bidirectional Transformer encoder with SoftMax 
decoder. BERT-CRF is based on BERT with CRF decoder instead of SoftMax decoder.

3) VisualBERT [41]: VisualBERT consists of a bunch of Transformer layers that implicitly 
align the elements of the input text with the regions in the associated input image in 
a self-attention manner, allowing unsupervised association of language elements with 
image regions.

4) SciBERT [40]: SciBERT is a BERT model trained on 1.14 million papers from Semantic 
Scholar, of which 136,800 are from the computer science domain.

5 https:// github. com/ INK- USC/ PLE/ blob/ master/ Data/ README. md

https://github.com/INK-USC/PLE/blob/master/Data/README.md
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5) FGCET [34]: Based on SciBERT, chemical structure graphs, in addition to context-
based representation embedding, are used as auxiliary features to recognize entity types.

6) LTR [10]: It uses more robust pre-trained language models such as ELMo and BERT 
for entity mentions and contextual representations. The core of the model is a hybrid 
classifier that exploits the type interdependence of potential type representations. Instead 
of predicting each type independently, it predicts low-dimensional vectors encoding 
potential type features, and the model reconstructs sparse high-dimensional type vectors 
from such potential representations.

7) MAF [23]: It proposes a generic multimodal matching and alignment framework 
that reduces the impact of mismatched text-image pairs and makes the representation 
between two modalities more consistent. The modal matching and alignment modules 
are based on self-supervised learning and do not require additional data annotation. The 
different module feature vectors are connected to achieve modal fusion.

8) AFET [38]: It first extracts the features of mentions and then divides the training dataset 
into clean and noisy sets. The category information of entities in the clean set is rela-
tively single, corresponding to only one category path, while the entities in the noisy 
set correspond to multiple category paths. This kind of data is the one containing noise. 
Mapping entity mentions and types into the same semantic space is convenient for doing 
calculations later. The training objective is to learn these two mapping matrices. After 
obtaining these two matrices, the categories can be predicted for the mentions in the 
test set.

9) MLR [12]: This method includes ontology structure in both training and prediction 
processes. In the training process, a new multilevel learning ranking loss is used to 
compare positive types with negative types based on a type tree. During prediction, a 
coarse-grained to fine-grained decoder which restricts the optional candidate objects at 
each level of the ontology based on the already predicted parent nodes (types).

10) NDP-PTC [32]: NDP is a new FET model that models the relationship between hierar-
chical types and noise. NDP-PTC is a progressive training method for training models 
that remove noise types from the training set.

Implementation We train our model on a single GTX 3090 GPU with fp16. Specifically, 
we set the word embedding dimension size to 512, and the max tokens is set to 1536 and 
the attention head is 4. We use SciBERT-Scivocab (uncased)6 as our text encoder, with 
the learning rate set to 5e-5, other parameters set to 1e-3, and batch size set to 32. We also 
employ the Adam [42] optimizer, with an epsilon of 1e-6 and a warmup rate of 0.08. To 
reduce overfitting, we set the dropout to 0.2. Furthermore, the original-5.5b ELMo7 model 
is pre-trained and its weights are frozen during training to ensure a fair comparison with 
the baseline model. And we also use GraphPad prism and Piktochart as mapping tools.

Similar to previous work [9–12], we use precision, recall and F1 to evaluate the type 
label set at each granularity, and other performance through strict accuracy (Acc), macro-
average F-score (Macro F1) and micro-average F-score (Micro F1).For the i-th instance, let 
the set of the true types be Ti, and the set of the predicted types be T̂i . The strict accuracy is 
the ratio of instances where Ti = T̂i . Macro F1 is the average of all F1 scores betweenTi and 

6 https:// github. com/ allen ai/ scibe rt
7 https:// allen nlp. org/ elmo

https://github.com/allenai/scibert
https://allennlp.org/elmo
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T̂i.for all instances, whereas micro F1 counts total true positives, false negatives and false 
positives globally.

For Micro F1:

For Macro F1:

4.2  Data analysis

As shown in Table 1, we construct our dataset CySets by distant supervision and manual 
annotation using scientific literatures in the domain of cybersecurity as a data source. The 
entity types are subdivided into several granularities for the analysis, and we concentrate 
on three granularities: coarse-type, fine-grained, and ultra-fine, with a combined total of 

(13)MicroF1 = 2
Recall ∗ Precision

Recall + Precision

(14)Precision =

∑N

i=1
∣ Ti ∩

̂Ti ∣
∑N

i=1
∣ ̂Ti ∣

(15)Recall =

∑N

i=1
∣ Ti ∩

̂Ti ∣
∑N

i=1
∣ Ti ∣

(16)Precision =
1

N

∑N

i=1

∣ Ti ∩
̂Ti ∣

∣ ̂Ti ∣

(17)Recall =
1

N

∑N

i=1

∣ Ti ∩
̂Ti ∣

∣ Ti ∣

Fig. 5  Distribution of labels for 
different evaluation datasets. 
In the OntoNotes and FIGER 
datasets, 4–7 types of labels 
alone cover more than 80% of 
the samples. In CySets, the first 
26 tags cover less than 80% of 
the data
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77 labels. Google drive8 has the entire collection of labels, where various colors stand for 
various granularities.

• 12 Coarse-type types: Asset, Threat, Risk, Security Algorithm, Safeguards, Privacy, 
Exposure, Human Factors, Privacy, Regulation, Threat Agent. Security Event

• 37 Fine-grained types: As first-level subtypes of Coarse-type types, e.g., /Resource, /
Attack.

• 28 Ultra-fine types: As secondary subtypes of Coarse-type, e.g.,. / Memory,. / Syntactic 
attacks.

We compare CySets with previous typical FET datasets, and the results show a more 
diverse and fine-grained label distribution in our dataset. Figure 5 shows the percentage of 
labels covered by the top N labels in each dataset.

Fig. 6  Visualization results of different datasets. It is worth noting that “OTH” in CySets does not refer to a 
separate category, but rather represents a collection of entity labels other than the entity types listed in the 
figure

8 https:// drive. google. com/ file/d/ 1mNM0 UEt7D- e9hsM EVRQz xJ277 Dt5GB 7v/ view

https://drive.google.com/file/d/1mNM0UEt7D-e9hsMEVRQzxJ277Dt5GB7v/view
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It is obvious that the curve of CySets grows more slowly and converges more slowly. In 
contrast, the OntoNotes and FIGER datasets, as the control group, converge extremely fast, 
and the distribution of labels is highly skewed towards the first few labels. Specifically, the 
FIGER dataset covers 80% of the samples in just 7 entity types, while OntoNotes is better, 
requiring only 4 types. We speculate that this may be due to its predefined ontology that 
limits the number of entity categories. In our CySets, on the other hand, the first 26 labels 
cover only about 76% of the data.

We conducted additional research using visualization to highlight the fine-grained hier-
archy and diversity of CySets entity type labels and to more visually show the differences 
across datasets in Fig. 6. We used the statistical mapping tool PICTOCHAT to analyses 
the labels in the different datasets. For the Cysets dataset that we constructed, we selected 
23 most frequent tags as representatives, and the rest of the tags were grouped into the 
“OTH” category, and their proportion of the total number of tags was calculated to visual-
ize the tag coverage. For the FIGER and OntoNotes datasets, we used data from the litera-
ture [13, 16], respectively. The label distributions of the previous FET datasets (FIGER and 
OntoNotes) are clearly skewed towards coarse-grained types, with a clear long-tail distri-
bution. In the FIGER dataset, for example, the coarse-grained type “Person” covers more 
than 40% of the entity types. It is worth noting that roughly half of the entity mentions in 
the OntoNotes dataset are labeled as “Other,” owing to the fact that many mentions cannot 
be found to correspond to the ontology and must be “passively” grouped together. In con-
trast, our dataset has a more distinct hierarchy and more extensive labeling.

4.3  Comparative experiment

To be fair, we divide the proposed model into two sets and test them with the baseline mod-
els equally. Table 2 displays the experimental findings of the comparison with the baseline 
models on the CySets dataset. Cyst-MMET-T is the text-only model without the addition 
of multimodal information, and Cyst-MMET is the model with the whole modules.

Table 2 demonstrates that the suggested model in this paper still outperforms baseline 
multimodal baseline models in the Micro-F1 and Macro-F1 measures, even after removing 
the visual encoding component from both the standard BERT and BERT+CRF models on 
the CySets dataset. We hypothesize that there are two main causes for this. The first is that 

Table 2  Performance of the FET 
model on the CySets dataset

Modality Model CySets

Accuracy Micro-F1 Macro-F1

Text ATTENTIVE [9] 14.12 39.25 39.90
BERT [40] 16.37 41.26 42.39
BERT-CRF [39] 18.44 43.93 45.08
Cyst-MMET-T 18.75 44.11 45.32

Text+Image VisualBERT [41] 18.81 42.88 45.03
SciBERT [40] 18.77 42.81 43.89
FGCET [34] 18.84 42.90 44.75
LTR [10] 19.71 43.63 45.27
MAF [23] 19.06 42.67 44.59
Cyst-MMET 22.73 47.30 51.09
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the model suggested in this research uses data from external knowledge bases as the sup-
plements, and the candidate set coverage is broader to ease the typing task. Second, Cyst-
MMET-T considers both word embedding and character embedding, thus enabling finer-
grained potential information to be obtained. In contrast to our multilevel fusion encoder, 
MAF [7] simply connects different modal features during fusion, ignoring the intrinsic 
semantics between modalities. This is later confirmed by the SOTA achieved by our model 
on CySets. In conclusion, the scope and accuracy of entity classification candidate sets are 
improved by multimodal augmented text representation, alleviating the data bottleneck and 
long-tail problems.

Table  3 illustrates the performance decomposition of the entity hierarchy on the 
development set at various granularities. As the entity hierarchy deepens and the gran-
ularity refines, the model performance deteriorates. As previously demonstrated in the 
fine-grained NER literature [13, 38], fine-grained labels are more difficult to predict 

Table 3  Results of our model for 
development sets with different 
granularity

Granularity Precision Recall F1

Coarse-type 35.7 37.1 36.4
Fine-grained 23.6 21.9 22.7
Ultra-fine 26.3 6.6 10.6

Fig. 7  Performance at different granularities on three test datasets
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than coarse-grained labels, and this problem is exacerbated when dealing with ultra-
fine types. As detailed in Section 4.5, the lower performance is due in part to noun/
pronoun mentions (e.g., “he”), as well as synonyms, annotation ambiguities, and so on.

We also show the performance at different granularities on the three standard fine-
grained typing datasets in Fig. 7. The F1 score is used as an evaluation metric. Spe-
cifically, for Fine-grained granularity, performance is evaluated for all datasets. Also, 
since BBN does not have any noise in the test dataset, the entity does not have the label 
of Ultra-fine granularity. However, for the FIGER and OntoNotes datasets, an entity 
can be assigned to different levels at the same time. Moreover, our model achieves 
SOTA performance on CySets and BBN datasets, both of which are based on scientific 
literature annotations, confirming the effectiveness of the model on literature-based 
datasets. Moreover, comparing the experimental results of Cyst-MMET and Cyst-
MMET-T in CySets, we can find that the growth of F1 score increases gradually with 
the finer granularity of the dataset. This proves that our multimodal model has a more 
pronounced enhancement at finer granularity and is more effective for expanding finer 
granularity type sets.

By comparing Cyst-MMET with other models on three standard datasets, Table 4 
provides the results. By utilizing the ACC, Macro-F1, and Micro-F1 evaluation met-
rics, we were able to confirm the model’s validity. The best results are displayed in 
bold for each dataset and evaluation metric. Special situations are described at the bot-
tom of the table, and the performances of the baseline models are taken from the litera-
tures. We will then present the visualization in Fig. 8 and analyze it further.

Our method, in particular, performs SOTA in Micro-F1 scores (see Fig.  8b), the 
most advanced or dominant performance (± 3%) in Accuracy (see Fig.  8a), and a 
micro difference in Macro-F1 scores (<2%). We hypothesize that this is due to the 
addition of a noise cleaning module (NDP-PTC [10]), which improves the “purity” of 
the labels, and this is supported by the significant advantage achieved by Cyst-MMET 
over NDP (without the noise cleaning module). Furthermore, when compared to pre-
vious models, such as MLR [12], SOTA performance is obtained across all datasets 
and metrics. On the FIGER dataset, in particular, our method significantly improves 
the accuracy score (+4.3%), indicating that our model is capable of producing a more 
accurate type set.

Table 4  Performance comparison of different models on three standard datasets

-: Not run on the specific dataset.
*:Not strictly comparable due to non-standard, much larger training set

Model OntoNotes BBN FIGER

Acc Mi Ma Acc Mi Ma Acc Mi Ma

AFET [38] 51.1 64.7 71.1 67.0 73.5 72.7 53.3 66.4 69.3
ATTENTIVE [9] 51.7 64.9 71.0 – – – 59.7 75.4 79.0
LTR [11] 63.8* 77.3* 82.9* 55.9 79.3 78.1 62.9 79.8 83.0
MLR [12] 58.7 68.1 73.0 75.2 79.7 80.5 65.5 78.1 80.5
NDP [32] 59.2 66.3 72.6 77.1 82.1 81.3 68.6 78.8 82.1
NDP-PTC [32] 59.6 66.9 73.2 77.9 81.9 82.3 70.0 79.5 82.6
Cyst-MMET 59.3 69.5 71.8 78.1 83.0 80.4 69.8 80.4 81.9
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4.4  Modal enhancement

As shown in Fig. 9, we verified the effectiveness of the multimodal model on CySets 
and three standard datasets, respectively. Among them, the improvement is most obvi-
ous on the BBN dataset, reaching nearly 5%, and about 3% on the other datasets, which 
fully demonstrates the effectiveness of multimodality. We conjecture that the reason for 
the best results on BBN is that BBN does not have any noise labels in the test dataset, 

Fig. 8  Evaluation results of 
different models on OntoNotes, 
BBN, and FIGER datasets. a 
accuracy, b Micro-F1

(a) Accuracy in three different datasets

(b) Micro-F1 in three different datasets

Fig. 9  Performance of unimodal 
and multimodal on different 
datasets. UNI. denotes the model 
Cyst-MMET-T and MULT. 
denotes the multimodal model 
Cyst-MMET
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which is extremely friendly to our model without the noise reduction module. Thus, it is 
undeniable that our multimodal component is effective for the FET task.

In addition, we also investigated the p-values of the Micro-F1 significance t-test 
between UNI (i.e., Cyst-MMET-T) and MULT (i.e., Cyst-MMET) on the four datasets of 
0.011, 0.014, 0.009, and 0.043, respectively. Thus, we can conclude that Cyst-MMET sig-
nificantly outperforms Cyst-MMET-T for almost all metrics on all four datasets. This result 
confirms the significant advantage of our Cyst-MMET model.

4.5  Ablation experiment

We conducted ablation experiments on the proposed model, as shown in Table 5, and the 
results of the ablation experiments show that the proposed model in this paper is sensi-
tive to each module. Specifically, the impact of removing the visual modal information is 
greater than that of removing the text modality. The impact of Module2 in the multilevel 
fusion encoder is greater than that of Module1, because Module2 mitigates the noise of 
irrelevant entity images and achieves finer-grained cross-modal interaction compared to 
Module1. It is worth mentioning that w/o visual and w/o description remove the infor-
mation of visual and text modality, respectively, and naturally there is no fusion module 
behind, so the experimental effect is the worst. This demonstrates the effectiveness of 
image enhancement for textual representation and multimodal learning.

Table 5  Ablation results on the 
CySets

Model CySets

Accuracy Micro-F1 Macro-F1

Full MODEL 22.73 47.30 51.09
w/o visual 18.75 44.11 45.32
w/o description 19.53 45.06 47.55
w/o fusion encoder 21.39 46.24 49.17
w/o M1 21.55 46.82 49.96
w/o M2 21.47 46.45 49.33

Fig. 10  Heat map of model prediction results and co-occurrence matrix of Ground Truth. Cyst-MMET 
learns co-occurrence matrix similar to Ground Truth
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4.6  Case study

To visualize the relationship between the model prediction results and Ground Truth, we 
show the label co-occurrence matrix between the model prediction results and Ground 
Truth in Fig. 10. The greater the correlation index, the darker the color represents, indi-
cating that the two labels are more similar. The diagonal line of the matrix represents 
two identical label correlations, as well as the maximum similarity of 1 between different 
labels. Furthermore, the closer the color in the two matrices, the smaller the difference 
between the prediction results and the fundamental. The difference between the two images 
is that the left image demonstrates similarity between real labels based on manual annota-
tion, which leads to better separation and clustering of entity types based on their similari-
ties. Whereas the figure on the right shows the relationship between the predicted labels of 
the multimodal model we have constructed. We aim to investigate the discrepancy between 
the predicted labels and the true labels with two graphs. We can see that Cyst-MMET can 
largely reproduce the label annotation results in Ground Truth, correlation can learn entity 
type labels accurately.

Furthermore, we manually examined 50 examples from the development set, three of 
which are depicted in Fig. 11. Overall, the model can produce an accurate set of entity type 
labels. We use Figs. 11a and 11b as a comparison group, where the former uses only tex-
tual information while the latter adds images matching the textual information. Figure 11c 
depicts an example of an annotation error. In (a), we use only textual information for the 
prediction, which is incomplete compared to the annotation (missing encryption and RSA). 

Fig. 11  An example of prediction 
results, where entity mentions are 
marked with a green underline, 
correct predictions are shown in 
green font, and missing labels are 
indicated in red font. Also, black 
font indicates labels that appear 
in the prediction results but are 
not annotated

Fig. 12  Analysis of possible 
causes of errors
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However, when we introduce images as auxiliary information, this problem is solved and 
the prediction results are in full agreement with the annotations, thus demonstrating the 
enhanced effect of multimodality.

Despite our efforts to annotate a comprehensive set of fine-grained types, many poten-
tially correct labels have been missed for a variety of reasons. For example, in Fig. 11c, 
“attack” makes sense, but is considered incorrect (Poor Understanding) and so does not 
appear in the annotation results. The dataset also contains synonym errors (not shown in 
Fig. 11), such as “Three years ago, [the explosions] occurred because of internal staff oper-
ational errors. “ This should be annotated as “security event” instead of “attack”, which 
may be the correct type but is not supported by the context (Annotation Ambiguity). In 
addition, there is an error called “Error Linking.” Although distant supervision is used to 
link context-independent entities to external knowledge bases for annotation, the linking 
error can be caused by the real-time and advanced nature of entities in the literatures, and 
the possible causes of the error are shown in Fig.  12. In conclusion, compared to other 
error types, annotation ambiguity due to insufficient understanding is the most common 
cause of errors (48%), which may be limited by the annotator’s knowledge base and lack of 
ability to separate some synonyms. In addition, since researchers may propose some new 
concepts, algorithms in the cybersecurity literatures, the external knowledge base don’t 
update this knowledge, leading to error linking, which is the second main cause of error 
(30%).

5  Conclusion and future work

In this paper, we provide an in-depth study of FET in the cybersecurity domain. A new 
dataset, CySets, is created based on the literatures to facilitate the study of new tasks in 
cybersecurity domain. Our dataset has sharper hierarchical relationships and more diverse 
fine-grained labels than the traditional FET datasets. We also propose a multimodal rep-
resentation learning model, Cyst-MMET, that includes a multi-level fusion encoder to 
effectively integrate multimodal data and enhance the model’s understanding of cyberse-
curity domain knowledge. Experimental results show that our model can effectively uti-
lize multimodal information to enrich the representation of cybersecurity entities, pro-
vide context-sensitive fine-grained type labels, and solve the data bottleneck and long-tail 
problems caused by fine-grained label sets. The fusion encoder can bridge the semantic 
gap between different modalities and alleviate the problem of irrelevant visual noise. In 
addition, the multimodal entity representation learning approach proposed in this paper is 
general enough to be used for entity typing tasks in other domains. Admittedly, an exist-
ing challenge in this paper is that many cybersecurity entities cannot be linked to external 
knowledge bases because they simply do not contain that particular entity, which is espe-
cially evident for new concepts in the cybersecurity literatures. Therefore, in future work, 
we consider introducing better entity linking algorithms to enhance the matching of entity 
mentions with external knowledge bases. In addition, the noise problem in all FET tasks 
still deserves our attention. We only consider which labels are mistakenly considered as 
“noise” to be added to the candidate type set, so in the future we intend to introduce a noise 
cleaning module into the model to complete the noise reduction/denoising of the dataset 
more completely.
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