
Vol.:(0123456789)

The Journal of Supercomputing
https://doi.org/10.1007/s11227-022-04603-3

1 3

KG2Lib: knowledge‑graph‑based convolutional network
for third‑party library recommendation

Jing‑zhuan Zhao1 · Xuan Zhang1,2,3 · Chen Gao4 · Zhu‑dong Li1 ·
Bao‑lei Wang1

Accepted: 12 May 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2022

Abstract
In the process of software system evolution, software users constantly put forward
a large number of expectations. For these expectations, software developers usually
use the existing third-party libraries and other software resources to accelerate their
development processes. At present, tons of third-party libraries are available. There-
fore, appropriate recommendation methods are very important for developers to find
suitable libraries for their development projects. In this paper, we present KG2Lib, a
recommendation method to assist software developers in selecting suitable software
libraries for their current projects. KG2Lib exploits a knowledge-graph-based con-
volutional network to recommend software libraries by relying on a set of libraries
which were already called by current projects. The interaction matrix, weight matrix
and knowledge graph are the inputs of KG2Lib. What’s more, KG2Lib recommends
libraries to developers from project level and library level, which can better capture
the fine-grained information to achieve better recommend performance. The perfor-
mance of KG2Lib was evaluated on three datasets with four existing baseline mod-
els. The experimental results show that KG2Lib achieves better performance and
helps software developers accurately select the appropriate third-party libraries.

Keywords Software development · Library recommendation · Knowledge graph ·
Graph convolutional network

 * Xuan Zhang
 zhxuan@ynu.edu.cn

1 School of Software, Yunnan University, Kunming 650000, China
2 Key Laboratory of Software Engineering of Yunnan Province, Kunming 650000, China
3 Engineering Research Center of Cyberspace, Kunming 650000, China
4 School of Information Science & Engineering, Yunnan University, Kunming 650000, China

http://orcid.org/0000-0002-5322-293X
http://orcid.org/0000-0003-2929-2126
http://orcid.org/0000-0001-9966-498X
http://orcid.org/0000-0003-0215-2158
http://orcid.org/0000-0003-4421-2067
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-022-04603-3&domain=pdf

 J. Zhao et al.

1 3

1 Introduction

With the rapid development of Internet technologies, the iteration cycle of software
becomes shorter [1], software developers need to develop higher quality products in
a shorter cycle. Software reuse is a solution to avoid the repeated work in software
development [2], which plays an important role in the process of software devel-
opment. Third-party libraries are important reusable software resources in soft-
ware development activities [3]. The reuse of third-party libraries can reduce the
code workload of developers, enable developers to focus on the crucial parts of the
project, improve software development efficiency and shorten development cycle
[4]. Therefore, software developers often search the required third-party software
libraries based on keyword matching on open source and various software develop-
ment websites. However, the content of the third-party libraries on various blogs or
forums on the web page may be incomplete, and developers need to view many dif-
ferent web pages to select the appropriate libraries, which greatly consumes devel-
opers’ time.

One possible solution is personalized recommendation system [5]. By obtain-
ing the relationship between users and items, it provides users with preferred items
(Wang et al., 2021) [6]. In recent years, recommendation system has been applied to
many fields such as music, film and e-commerce. The current recommendation tech-
nologies mainly include recommendation based on collaborative filtering (Han et al.
2021) [7], recommendation based on knowledge graph [8, 9, 10], recommendation
based on deep learning [11, 12, 13], etc. By adding recommendation technology,
users can reduce their time consumption in selecting their enthusiastic items [14].

Most of the existing third-party library recommendation technologies for soft-
ware development are mainly based on the library use pattern (Katsuragawa et al.
2018) [8, 15, 16], or based on the library text description and developer require-
ments description [15, 17, 18], Deshpande et al. (2022) [19], or the relationship
between the projects and the libraries [4, 20, 21]. Such recommendation methods
have the following problems:

1. The recommendation results do not cover the whole set of recommended libraries.
Some popular libraries are recommended more frequently [4], while others are
not so popular and have the lower chance to be recommended. This is the “long
tail problem” in the field of third-party library recommendation (Anderson et al.,
2006) [22] and leads to limited recommendation results and lack of diversity.

2. Only considering the correlation among projects and ignoring the rich auxiliary
information of the third-party libraries, the recommendation results are not refined
enough.

3. Focusing on projects level (projects’ similarity) or library level (library usage
pattern) for the recommendation, which separated the relation between projects
and libraries.

To solve the above problems, KG2Lib, a novel approach utilizing a convolutional
network based on knowledge graph [23] is proposed. It exploits the rich semantic

1 3

KG2Lib: knowledge‑graph‑based convolutional network for…

relationship of knowledge graph [24] to make the recommendation results more
diversified and fine-grained. Next, the vector representation of projects is obtained
from the project level, and the similarity among projects are calculated. Accord-
ing to the similarity value, the top-N projects and their corresponding third-party
libraries are obtained. Then, the fine-grained information about the libraries from
the library level are taken into consideration, which can not only consider the cor-
relation information among projects, but also the rich auxiliary information among
libraries. What’s more, the improved graph convolution network (GCN) is employed
to consider whether the third-party libraries in the library set can be recommended.
This ensures that the libraries we recommend are highly relevant to the project, not
the most popular libraries. Therefore, the “long tail problems” in third-party recom-
mendation field can be alleviated greatly.

KG2Lib aims at providing software developers who have already called some
libraries in the current project, and expect to get recommendations on which addi-
tional third-party libraries should be further called. In other words, a software devel-
oper provides the current libraries he has called, and KG2Lib returns a library list
for him to choose from in the future. This scenario is done based on training data
from other projects. To this end, this paper makes the following contributions:

1. A new software libraries recommendation model is introduced, which has made
full use of all libraries information and projects’ similarities to assist developers
for choosing suitable software libraries for their projects.

2. Constructing a representation model to describe the relationship and importance
among the third-party libraries and the projects. Meanwhile, the new representa-
tion model is used to compute similarities of projects.

3. Alleviate a phenomenon in recommender system that popular items are recom-
mended frequently while less popular items are often recommended seldom or
not recommended.

4. Perform an experimental study on the performance of KG2Lib in comparison
with four current baseline models on three datasets, and exploiting various qual-
ity metrics, i.e., success rate, diversity and so on. The experimental results show
that KG2Lib achieves better performance.

In the following, Sect. 2 introduces the background knowledge and related work
of third-party library recommendation in software development. Section 3 describes
the recommendation method of KG2Lib. Section 4 introduces the implementation
details of model. Section 5 verifies the performance of KG2Lib through experi-
mental analysis. Section 6 concludes the paper and outlines directions for the future
work.

 J. Zhao et al.

1 3

2 Related work

Recommender systems aims at helping users find useful and preferred information.
Early recommender systems used collaborative filtering methods. These methods
collected users’ preferences by user–item historical interactive data, and calculated
the similarities between users and items. Wang and Nie [25] generated item’s rec-
ommendation by incorporating all auxiliary information about users and items,
which has improved the problem of data sparsity ad scalability in previous collabo-
rative filtering algorithms. Lei et al. (2010) [26] developed a refined item-based col-
laborative filtering method using the average rating for items and took users’ gen-
eral opinion on items into consideration. Based on Lei et al. (2010) [8, 26] work,
Liu et al. (2015) [27] proposed an improved collaborative filtering recommendation
algorithm based on user ratings and item attributes, and calculated their similarity to
recommend items. Guan [28] adopted a weighted feature form and a Bayesian form
to enhance the performance in the process of collaborative filtering to alleviate the
data sparsity problem.

Most of the above systems heavily rely on historical data and have the cold start
problem. On the basis of tons of data, constructing the interactive matrix, calculat-
ing the similarity about users and items, many useful and abundant auxiliary infor-
mation are ignored, leading to a poor performance. After the emergence of knowl-
edge graph [24], lots of researchers have begun to combine collaborative filtering
with knowledge graph to obtain diverse and rich results [30, 31]. Zhang et al. [32]
proposed a collaborative filtering with the implicit feedback based on knowledge
graph, in which the interactions between users and items are modeled as an inter-
action knowledge graph, and the collaborative filtering problem is converted into
link prediction problem. Yu et al. [33] put forward a privacy-preserving multi-task
framework for knowledge graph enhanced recommendation. Dang et al. [34] pro-
posed a service recommendation model based on knowledge graph and knowledge
representation learning to alleviate the information overload and data sparsity prob-
lem in Web services.

In their model, knowledge graph can effectively enhance the recommenda-
tion results as an auxiliary tool [19]. With the development of deep learning,
graph convolutional network has attracted researchers’ concern [31]. The combi-
nation of knowledge graph and GCN is a direction to improve the performance of
graph structure recommendation. Mei et al. [36] proposed a collaborative filtering
model based on light GCN to mine various user–item interaction information. The
user–item interaction graph was constructed according to the interaction history and
item knowledge graph information, and then inputted it into the model. Yang et al.
(2021) [35] proposed a hierarchical attention GCN, combined with the explanatory
recommendation of knowledge graph to mine users’ potential preferences from the
high-order connected structure of heterogeneous knowledge graph. Zhang et al.
(2019) [37] utilized deep convolutional neural network model to learn the attrib-
ute information of entities in knowledge graph, encode attribute information of enti-
ties, and both attribute information and triple structure information were utilized to

1 3

KG2Lib: knowledge‑graph‑based convolutional network for…

learn knowledge representation, and then generated attribute-based representation of
entities.

So far, the recommendation system has been applied in various fields. In third
-party library recommendation field, Thung et al. [4] combined association rule
mining with collaborative filtering technology, calculated the similarity between
third-party libraries, and generated a recommendation list to developers. This is
also the earliest search on third-party library recommendation. Saied et al. [38]
proposed a recommender system that recommend libraries based on the extent
to which they are used together. Specifically, LibCUP uses a clustering approach
based on the DBSCAN algorithm to identify and recommend library co-usage
patterns. Nguyen et al. (2020) [39] proposed CrossRec, which adopted a collab-
orative filtering technique to recommend libraries for software developers. The
relation between projects and libraries are expressed as an interaction matrix,
and the similarity between projects are calculated by the number of libraries they
have called. Chen et al.(2020) [40] integrate knowledge graph into the third party
library recommendation for mobile application development.

The above methods for third-party library recommendation did not exploit
the information about both projects and libraries. The work of Thung et al. [4]
adopted a filtering technique, which can only recommend popular libraries and
take no consideration on the libraries. This leading a phenomenon that other
unpopular libraries but have high correlation with current project are not recom-
mended. Saied et al. [38] only considered the library usage pattern but ignored
the project’s actual situation. As a result, the libraries it recommends may be not
meet the software developers’ requirement. The collaborative filtering method
in Nguyen et al. (2020) [39] only considered the similarity between projects but
ignored the rich information about libraries. Our work differs from the above
methods since we not only consider the projects’ similarity, but also make full
use of the rich libraries’ information. First, the projects’ similarity is calculated.
Then, the interaction matrix, the library weight matrix and the library knowledge
graph are inputted into the improved GCN.

3 Methodology

In this section, we describe KG2lib, a third-party library recommendation for soft-
ware developers. By introducing the knowledge graph for the third-party libraries,
it provides richer and more fine-grained recommendation results for the third-party
libraries. The inputs of KG2Lib are the interaction matrix Y, the weight matrix W
and the knowledge graph G. The output of the model is the top-N recommendation
results of third-party libraries. Figure 1 shows the flow of recommendation.

Our method is divided into two parts: data processing and model processing. The
data processing part is mainly composed of four steps: data acquisition, interactive
file processing, weight matrix processing and graph file processing. Three datasets
are adopted in our experiment. For the first dataset, the projects and libraries were
obtained from GitHub. The other two datasets are obtained from our comparative

 J. Zhao et al.

1 3

baseline methods. According to the calling relationships between the projects and
libraries in above three datasets, interactive files and weight matrix files are gen-
erated. The knowledge graph of the third-party libraries is constructed according
to the relationship data of the third-party libraries (such as version, groupID and
language).

The model processing part includes two parts. One is calculating the similarity of
the projects from project level and obtain a third-party library set which the libraries
are called by similar projects. From third-party library level, fine-grained third-party
library information is obtained from the knowledge graph G. Then, the vector repre-
sentation of the third-party libraries is calculated. The interaction matrix Y, knowl-
edge graph G, and weight matrix W are input into the improved GCN for training.
The prediction function is in formula (1).

where ŷa(p.l) is the probability that project p calls the library l, � represents the
KG2Lib function, represents the trainable parameter of KG2Lib.

3.1 Input preprocessing

Interaction matrix Three elements of the recommendation system are users, items
and scores (Noia et al., 2021) [41]. Generally, the user–item interaction matrix is
used to represent the potential relationship between users and items [42]. Each

(1)ŷa(p.l) = 𝜏(p, l|k, Y ,W,G)

Fig. 1 Overall recommendation framework

1 3

KG2Lib: knowledge‑graph‑based convolutional network for…

column in the interaction matrix represents an item, and each row represents a user.
The junction of the row an d the column indicates the user’s score on the corre-
sponding item [43]. Phung et al. (2013) applied the idea of user–item interaction
matrix to the third-party library field. They transformed the relationship between
users and items into the interaction between projects and libraries. Each software
project may contain multiple third-party libraries. If a project calls a third-party
library, the junction value is represented by 1; otherwise, take the value 0. In this
paper, the interaction matrix is processed into the form of “Project-library-Label,” as
shown in Fig. 1. Its description is as follows:

Given a project set P = {p1, p2, …, pm}, where m represents the number of the
projects; a third-party library set L = {l1, l2, …, ln}, where n represents the num-
ber of third-party libraries;
Project library interaction matrix Y ∈ Rm*n, which is defined according to the call-
ing relationship between the projects and the libraries, where ypl = 1 (ypl indicates

Table 1 Interaction matrix Y Program Library Interaction

p1 l1 1
p1 l2 1
p1 l3 0
p1 l4 0
p1 l5 1
p2 l1 1
… … …
p3 l5 0

Fig. 2 Relation network example

 J. Zhao et al.

1 3

whether the current project p has called library l) indicates that the project p has
called the library l, and accordingly, ypl = 0 indicates that the project p has not
called the library l.

For example, given a project set P = {p1, p2, p3}, a library set L = {l1, l2, l3, l4, l5}.
If p1 calls l1, l2, l5, p2 calls l1, l3, l4, p3 calls l1, l2, l4, then their corresponding interac-
tion matrix is expressed in the form shown in Table 1.

According to the interaction of the above projects and libraries, a relationship net-
work between projects and libraries is constructed. The interaction matrix in Table 1
is transformed into the following network in Fig. 2.

Weight matrix The weight matrix is built according to the number of times a pro-
ject calls a library, so that the third-party libraries can be recommended to develop-
ers in a more fine-grained way. The calculation formula is as follows:

Given a project set P = {p1, p2, p3}, a third-party library set L = {l1, l2, l3, l4}, pro-
ject p1 ∋ l1, l2, l3, where l1 is called twice, l2 is called three times, l3 is called three
times; project p2 ∋ l1, l3, l4, where l1 is called once, l3 is called three times, l4 is called
four times; and project p3 ∋ l1, l3, where l1 is called twice, l3 is called once. The total
number of libraries in p1 is 8 and the number of l1 called by p1 is 2. According to the
above formula, the weight of l1 in p1 is 0.25. The others’ calculation process is the
same as p1 and l1. Then, all libraries’ weight value in different projects are obtained.
Their corresponding weight matrix is shown in Table 2.

Knowledge graph. A knowledge graph is composed of triples. A triple in the
knowledge graph is (h, r, t), where h represents the head entity of a triplet, t rep-
resents the tail entity of a triplet, and r represents the relation. For example, for
the library Junit, the constructed triples (Junit, Junit.Version, 3.8.1) represent that
the version of Junit is 3.8.1. Based on the feature of the dataset we obtained, the
determined relation types in this paper include library version, function description,
groupID and language. Given a project set P = {p1, p2, p3}, and a third-party library
set L = {l1, l2, l3, l4}, where

l1: {version: 1.1.0; function: test; groupID: PAM; Language: Java};

(2)Wli
=

The number of li in current project

Total number of libraries in current project

Table 2 Weight matrix Projects Library Weight

p1 l1 0.25
p1 l2 0.375
p1 l3 0.375
p1 l4 0
p2 l1 0.125
… … …
p3 l3 0.33
p3 l4 0

1 3

KG2Lib: knowledge‑graph‑based convolutional network for…

l2: {version: 3.1.5; function: array calculation; groupID: PAM; Language:
Python};

l3: {version: 2.2.7; function: data analysis; groupID: PBM; Language: Python};
l4: {version: 5.2.6; function: test; groupID: PCM; Language: R}.
According to the above information, we can get the triple (take the information

of l1 as an example): (l1, version,1.1.0), (l1, function, test), (l1, groupID, PAM), (l1,
Language, Java). The others are the same as l1. Based on this, a knowledge graph for
these third-party libraries is shown in Fig. 3:

3.2 KG2Lib model

Given the project–library interaction matrix Y, the weight matrix W as well as
the knowledge graph G, we aim to predict whether library l can be recommended
to project p as the most suitable library. KG2Lib integrates the data information
of the knowledge graph G, the interaction matrix Y and the weight matrix W,
input into graph convolution network. The visualized representation of the inte-
grated information is shown in Fig. 4.

The core ideas are as follows.
According to the similarity of libraries, the top-N library set to be recom-

mended is obtained, and the library set to be recommended contained in the
top-N item is obtained. For these third-party libraries to be recommended, obtain
their interaction information with the projects, the weight information in the pro-
ject and the characteristic information contained in these third-party libraries. For

Fig. 3 An example of knowledge graph for third-party libraries

 J. Zhao et al.

1 3

each third-party library to be recommended, take the current third-party library
as the center and calculate its characteristics for the nodes in its neighborhood.

Firstly, the vector representation of the projects in the knowledge graph is cal-
culated. The implementation process is as follows: for a given project p, there
are neighbor nodes (l1, l2, l3…, ln), the characteristics of p can be expressed as
𝛿p =

(
𝛿1, 𝛿2, 𝛿3,… , 𝛿n

)
 , �i represents the weight of the ith library, and its calcula-

tion formula is:

Fi is the number of times the ith library appears in project p, Al represents the
total number of occurrences of n libraries in project p.

The most similar projects can be obtained by calculating the similarity according
to the feature vector of the projects. 𝛿p =

(
𝛿1, 𝛿2, 𝛿3 … 𝛿n

)
 , 𝜏q =

(
𝜏1, 𝜏2, 𝜏3 … 𝜏m

)
 , the

similarity calculation of project p and project q is as follows:

where k represents the number of third-party libraries shared by p and q [41].
According to the above similarity calculation method, the top-n projects set that

most similar to p is obtained. Then, the set of third-party libraries recommended to
project p can be obtained. However, this is only recommended third-party libraries

(3)�i =
Fi

Ai

(4)simp, q =

∑k

a=1
�a × �a

�∑k

a=1
(�a)

2 ×

�∑k

a=1
(�a)

2

Fig. 4 Visualized representation of GCN input

1 3

KG2Lib: knowledge‑graph‑based convolutional network for…

to users at the project level, which needs to be extended to the third-party library
level more finely to recommend more accurate third-party libraries. By construct-
ing the library knowledge graph, the correlation among libraries can be considered,
and the abundant auxiliary information about libraries are used to alleviate the cold
start problem. Therefore, the feature vector of the third-party libraries needs to be
considered.

A software project may call multiple third-party libraries, and each third-
party library is of different importance to the software project. According to
the different functions of the software project, the types and emphases of the
called third-party libraries are also different, and each third-party library con-
tains different relationship attributes. Therefore, in the recommendation process
of a third-party library, calculating the importance of the relationship is very
important for the software project. This is useful for recommending the librar-
ies which has high correlation with the project, rather the most popular librar-
ies, which solves the “long tail problem.” In this paper, for each recommended
library li , its feature can be represented as:

Fli
 represents the feature of li , N

(
li
)
 the neighbor set which has relation with

li , ent is the entities set which have link with li and ent means the vector repre-
sentation of ent.

Hproj,relali ,ent
 indicates the relevance degree of project and library li . Its calcula-

tion are as follows:

However, in the actually calculation process, some projects call limited num-
bers of software libraries, which limit available information and libraries feature
they have called. While those projects who called more libraries can get rich
feature information and libraries information they have called. Therefore, the
libraries’ feature should be standardized according to unified standards. In this
paper, the standardize libraries feature are expressed as:

Meanwhile, we aggregated the projects and the relations in the neighborhood
of libraries li . The aggregation formula is shown in formula (8).

(5)Fli
=

∑

ent∈N(li)

N
(
li
)
Hproj,relali ,ent

ent

(6)Hproj,rela = h(proj, rela)

(7)Hproj,relali ,ent
=

exp
�
Hproj,relali ,ent

�

∑
ent∈N(li)

exp
�
Hproj,relali ,ent

�

(8)aggr = �

(
w ⋅

(
li +Hproj,relali ,ent

)
+ b

)

 J. Zhao et al.

1 3

where w represents the learnable weight, b represents the learnable bias term, σ indi-
cates the ReLU activation function, which completes the aggregation operation. The
probability of whether project will call the library li is in formula (9).

� is the sigmoid activation function. pro is the representation of a specified
project. aggr is the aggregation feature.

According to the prediction results, it is further filtered on the original set of
third-party libraries to be recommended and recommended to developers. The
process flow of knowledge-graph-based GCN is shown in Fig. 5.

3.3 Experimental evaluation

Based on the method described in Sect. 3, this section describes the details of
the model implementation. Four third-party library recommendation methods,
LibRec [4], LibFinder [20], LibCUP (EMASA et al., 2018) and CrossRec [39]
which are related to our work, were chosen as our comparative baseline models.
To better compare the performance of our method and these four methods, we
adopted their datasets as our experimental datasets.

(9)ŷa
(
project ⋅ li

)
= 𝓁(pro, aggr)

Fig. 5 Process flow of knowledge-graph-based GCN

1 3

KG2Lib: knowledge‑graph‑based convolutional network for…

3.4 Dataset processing

The first data set (dataset1) is obtained from GitHub. It is used to evaluate the
performance of KG2Lib and the comparison of KG2Lib, CrossRec and LibRec.
The second dataset (dataset2) is derived from the public data set of LibFinder. It
is applied for comparing the performance of KG2Lib, CrossRec and LibFinder.
The third dataset (dataset3) comes from the public dataset of LibCUP. It is used
as the comparison dataset of KG2Lib, CrossRec and LibCUP. The filtering condi-
tions of the original dataset are as follows:

1. Pom.xml file shall be included in the project.
2. The source code of the project exceeds 1500 lines.
3. The number of libraries called by the project exceeds 15.

The form of the processed datasets is shown in Table 3.

3.5 Model implementation

Our data preprocessing algorithm is shown in Algorithm 1. This algorithm only
shows the processing flow of weight matrix and interaction matrix. Lines 2–10 is
used for calculating the call relationship between the projects and the libraries and
storing it in the mapping dictionary. Firstly, the duplicate projects and libraries are
removed by the project name. Then, sort the libraries and projects into Data_P
and Data_Lib . For each project pi , obtain the libraries it called and calculate the
number of each library called by pi , storing them into List_Lib and AllCount_l ,
respectively. Algorithm 11–27 calculates the interaction matrix Y and weight
matrix W. For each project pi , if it has called lj in Data_Lib , the output interaction
relation can be expressed as (pi, lj, 1), and the weight relation can be expressed as
(pi, lj,weightvalue). Otherwise, both the interaction relation and the weight relation
are (pi, lj, 0). The time complexity of algorithm 1 is O(n2).

Table 3 Form of datasets

Library Version GroupID Function Language ∈ Project

1 l
1

3.5.2 PAM Test Java p
1

2 l
2

1.2.0 PBM Array calculation Python p
1

… … … … … … …

 J. Zhao et al.

1 3

The algorithm for generating candidate project is shown in Algorithm 2. Lines
2–12 of the algorithm first calculate the feature vector and similarity of project p
and project set Q. For any p (the projects that need to be recommended libraries),
calculate its vector representation Fp . Then, for each project q in set Q, calculate
its feature vector Fq . Last, the similarity between p and q can be obtained. Then,
sort the projects to be recommended according to the similarity values. After that,
the top-N project list that will be recommended is obtained. The time complexity
of Algorithm 2 is O(n).

1 3

KG2Lib: knowledge‑graph‑based convolutional network for…

3.6 Evaluation metrics

To evaluate the method proposed in this paper, the below indicators were adopted.
These indicators are often used in the evaluation of recommendation systems in the
field of software engineering (Tran et al., 2021) [44]. Firstly, the meaning of the fol-
lowing symbols is introduced:

N: The cut-off value of the ranking list. For example, N = 5 means that the top
five recommendations are selected.
k: The number of neighbor entities applied to the recommendation process.

1. Success rate

Success rate refers to a given set of projects to be tested, P = {p1, p2, p3, …, pn}, for
any pi ∈ P, (i = 1, 2, 3,… n) , a recommendation system returns at least one library
[4]. Its calculation formula is:

(10)successrate =
countp∈P(

||resultN(p)|| > 0)

resultall

 J. Zhao et al.

1 3

where count () represents the number of times the Boolean expression specified in
its parameter is true. countp∈P(||resultN(p)|| > 0) is the number that the recommenda-
tion results are not null. resultall indicates the total number of recommendations.

2. Recommendation diversity

Recommendation diversity refers to the ability of the system to provide devel-
opers with as many third-party libraries as possible. The recommended third-
party libraries should cover a wider range than only a small number of popular
third-party libraries [45]. Its evaluation indicators are coverage degree COV and
focus degree FOC, as shown in formulae (11) and (12). COV represents the per-
centage of libraries recommended to the project in the total number of libraries.
FOC is used to evaluate whether the recommended results only focus on a small
number of third-party libraries. For a given set of candidate third-party librar-
ies l that can be recommended, numc(l) represents the number of projects call-
ing library l (l ∈ L), and total represent the number of recommended third-party
libraries in all projects.

3. Novelty

When recommending a library, novelty is used to measure whether the system can
recommend a library to developers from the “long tail library set [46]. In the three
data sets used in this paper, most of the third-party libraries are called by the project
less times, while some popular libraries are called many times in the project. The
evaluation index is EPC (expected population complex) [47] as shown in formula
(13).

where deg(p,m) indicates the correlation between the library and project p at
the m position of the top-N list. If it is relevant, take 1; if it is not relevant, take
0. pop

(
Frem(p)

)
 indicates the popularity of the third-party database in the m posi-

tion of the top-N list. The more unpopular the libraries recommended by the sys-
tem, the higher the EPC value, and the more novel the recommended method can be
reflected.

(11)COV =

∑n

i=1
Result

�
pi
�

L

(12)FOC = −
∑

l∈L

(
#numc(l)

total

)
ln

(
#numc(l)

total

)

(13)EPC =

∑
p∈P

∑N

m=1

deg(p,m)∗[1−pop(Frem(p))]
log2 (m+1)

∑
p∈P

∑N

m=1

deg(p,r)

log2 (m+1)

1 3

KG2Lib: knowledge‑graph‑based convolutional network for…

4. CTR prediction

The evaluation index es of CTR (click through rate) are AUC (area under the curve)
and F1 [48]. AUC is defined as the area enclosed by the coordinate axis under the
ROC (receiver operating characteristics) curve, and its value range is in the range of
0.5 and 1. The higher the AUC value is, the higher the authenticity of the detection
method is. F1 value is evaluated by Precision and Recall, and its calculation formula
is as follows:

The precision indicates the ratio of libraries which is related to the current pro-
jects. Its calculation process is as follows:

LibRevelant is the number of libraries which is suitable for the current libraries and
LibAllRec is the total number of recommended libraries. Recall is the ratio of LibAllRec
and the actual number of libraries, and it can be represented as follows:

4 Experimental evaluation

In this section, series of experiments were conducted to verify the performance of
KG2Lib. Firstly, the model is experimentally analyzed from two aspects of CTR pre-
diction and top-N recommendation to evaluate the performance of KG2Lib. Then,
the recommended performance of four baselines (LibRec [4], LibFinder [20], Lib-
CUP (EMASA et al., 2018) and CrossRec [39] is compared with KG2Lib. Finally,
some limitations of KG2Lib were point out.

The evaluation process of the experiments is mainly divided into three stages:
data processing, model training and result evaluation. In the data processing stage,
we obtain the project file from GitHub website and parses it according to the pom.
xml file to form a dataset file, which is used to evaluate KG2Lib, LibRec, CrossRec,
LibFinder and LibCUP. Each dataset is divided into three parts: training set, verifi-
cation set and test set. Their ratio is 6:2:2. In the evaluation stage, we compare the
recommended results with the data in the validation set to calculate the evaluation
index.

Meanwhile, to prove the effectiveness of KG2Lib, we make statistics on the
calling frequency of third-party libraries in three datasets. The calling frequency
are divided into five intervals, namely “< 10,” “11–20,” “21–50,” “51–200” and
“> 200.” Among the 13,497 third-party libraries contained in dataset1, 12,962

(14)F1 =
2 ∗ Precision ∗ Recall

(Precision + Recall)

(15)Precision ==
LibRevelant

LibAllRec

(16)Recall ==
LibAllRec

LibActual

 J. Zhao et al.

1 3

third-party libraries (about 96.03% of the total number of third-party libraries) were
called less than 10 times, and 91 third-party libraries (about 0.6% of the total num-
ber) were called more than 50 times. Among the 5129 third-party libraries contained
in dataset2, 3275 third-party libraries (accounting for 63% of the total number of
third-party libraries) were called less than 10 times, and 590 third-party libraries
(accounting for about 12% of the total number) were called more than 50 times.
Among the 56,365 third-party libraries contained in dataset3, 49,799 third-party
libraries (accounting for about 88% of the total number of third-party libraries) were
called less than 10 times, and 1356 (accounting for about 2% of the total number of
third-party libraries) were called more than 50 times. The bold style of the data in
the table are to showing the long tail problem in sofeware libraries recommendation,
from the table we can see that: the three datasets have a common feature: the vast
majority of third-party libraries are called less, and a few third-party libraries are
called frequently. This is also the feature of the recommendation field, that is, the
“long tail problem” (Table 4).

4.1 Experimental comparison on dataset1

We compared dataset1 with LibRec, CrossRec and KG2Lib by using different com-
binations of number of recommended libraries (N) and number of neighbor projects
exploited in the recommendation phase (k). Varying N means changing the length
of the recommendation list, whereas increasing k means considering more neighbor
projects for the recommendation.

The experimental results of KG2Lib, CrossRec and LibRec on the success rate
are shown Tables 5, 6, 7, and 8, the bold style of the result in table shows that in

Table 4 Distribution of libraries
in datasets

Projects < 10 11–20 21–50 54–200 > 200

Libraries (dataset1) 12,962 280 164 81 10
Libraries (dataset2) 3275 600 664 432 158
Libraries (dataset3) 47,999 3236 1974 1110 246

Table 5 Success rate@5 of
KG2Lib, CrossRec and LibRec
on dataset1

Model k = 5 k = 10 k = 15 k = 20 k = 25

LibRec 0.876 0.862 0.868 0.863 0.868
CrossRec 0.903 0.931 0.929 0.926 0.929
KG2Lib 0.924 0.932 0.931 0.928 0.933

Table 6 Success rate@10 of
KG2Lib, CrossRec and LibRec
on dataset1

Model k = 5 k = 10 k = 15 k = 20 k = 25

LibRec 0.864 0.864 0.867 0.865 0.863
CrossRec 0.945 0.956 0.950 0.954 0.955
KG2Lib 0.95 0.955 0.956 0.958 0.961

1 3

KG2Lib: knowledge‑graph‑based convolutional network for…

differentt indicators and conditions, the method who have achieved the best result.
Four groups of experiments were conducted on dataset1, respectively, changing the
number of recommended projects and the number of neighbor projects included
in the recommended range. Table 5 shows that when the number of recommended
third-party libraries is 5, changing the k value from 5 to 25, the success rate of
KG2Lib is always higher than that of CrossRec and LibRec. It can be seen that at the
condition of success rate@5, the maximum success rate of LibRec and CrossRec is
0.876 and 0.903, respectively, while the maximum success rate of KG2Lib is 0.933.
This shows that KG2Lib gets better performance than the other two approaches.

When the number of recommended projects is 10, it can be seen that the success
rate of LibRec, CrossRec and KG2Lib changes slightly when altering the value of
k. However, the value of KG2Lib is still higher than that of LibRec and CrossRec.
It can be seen from Tables 5 and 6 that when the recommended list value remains
unchanged, the success rate changes little by changing the value of k.

Next, we investigate the success rate with regard to N. We consider a small num-
ber of recommended items, i.e., N = {1, 3, 5, 7, 10}. In practice, this means that
the developer wants to see a short list of recommended libraries. In the first experi-
ment, keeping k = 10 and change the value of N (the length of the recommenda-
tion list), the outcomes are described in Table 7. When N = 1, the success rates of
LibRec, CrossRec and KG2Lib are 0.647, 0.697 and 0.713, respectively. That is, if
the current user only needs one search result, KG2Lib can also obtain higher suc-
cess power than LibRec and CrossRec. On the other hand, the performance of this
method is also verified. However, we found that when k = 10, N = 5, the success rate
of KG2Lib is 0.910, which is less than CrossRec. But on the whole, the overall suc-
cess rate of KG2Lib are higher than the other two methods.

When k = 20 and N = 1, we found that the success of three methods are all
improved, indicating that expanding the number of recommended projects can
improve the success rate of the model. In addition, when changing N from 1 to 10,
the success rate values of KG2Lib are always higher than LibRec and CrossRec. To
further observe this phenomenon, we conducted more experiments with an increas-
ing k, e.g., k = {50, 60, 100}. As far as we can see, there are no subtle differences

Table 7 Success rate@
{1,3,5,7,10}, k = 10 of KG2Lib,
CrossRec and LibRec on
dataset1

Model N = 1 N = 3 N = 5 N = 7 N = 10

LibRec 0.647 0.813 0.865 0.901 0.925
CrossRec 0.697 0.879 0.919 0.939 0.956
KG2Lib 0.713 0.890 0.910 0.942 0.964

Table 8 Success rate@
{1,3,5,7,10}, k = 20 of LibRec,
CrossRec and KG2Lib on
dataset1

Model N = 1 N = 3 N = 5 N = 7 N = 10

LibRec 0.673 0.819 0.868 0.896 0.925
CrossRec 0.736 0.881 0.924 0.937 0.953
KG2Lib 0.754 0.892 0.926 0.941 0.954

 J. Zhao et al.

1 3

between the conclusions obtained from the new experiments with those previously
presented in the paper. Thus, for the sake of clarity, the outcomes of these experi-
ments are omitted from the paper (Table 9).

In addition, we analyze the CTR performance of KG2Lib on dataset1. The results
are as follows:

It can be seen from the results above that the AUC and F1 value in three data-
sets descended gradually. The dataset1 contains 1200 projects and 13,497 libraries,
the dataset2 contains 29,653 projects and 5129 libraries, while the dataset3 contains
90,475 projects and 56,435 libraries, which means that the CTR performance of
KG2Lib are getting smaller with the increase in data set size.

4.2 Experimental comparison on dataset2

We compared dataset2 with LibFinder, CrossRec and KG2Lib by using different
combinations of number of recommended libraries (N) varying N means changing
the length of the recommendation list, whereas increasing k means considering more
neighbor projects for the recommendation. The success rate of CrossRec, LibFinder
and KG2Lib on dataset2 is shown in Table 10 the bold style of the result in table
shows that in different indicators and conditions, the method who have achieved the
best result.

When N = {1,2,4}, the success rate of KG2Lib is higher than that of CrossRec
and LibFinder, while when N = {6,8,10}, the success rate of KG2Lib is higher than
CrossRec, but lower than LibFinder. LibFinder is more advantageous when develop-
ers want to get more recommended library results. This is also a direction that our
work need to improve in the future.

In addition, when preprocessing dataset2, some projects call only one or two
libraries. Phung et al. (2020) believed that such metadata pairs will reduce the rec-
ommended performance of the model, so the project to be tested should contain
more libraries. If the method heavily depends on the historical interactive data of

Table 9 AUC and F1 of
KG2Lib on dataset1

Dataset AUC F1

Dataset1 0.975 0.927
Dataset2 0.852 0.813
Dataset3 0.699 0.674

Table 10 Success rate of
CrossRec, LibFinder and
KG2Lib on dataset2

Model N

1 2 4 6 8 10

LibFinder 0.633 0.698 0.813 0.876 0.904 0.918
CrossRec 0.771 0.816 0.851 0.860 0.863 0.864
KG2Lib 0.779 0.821 0.857 0.872 0.876 0.881

1 3

KG2Lib: knowledge‑graph‑based convolutional network for…

the projects and libraries, there will be a cold start problem. Based on this prob-
lem, we use the relevant entity information in the knowledge graph of the third-party
libraries to improve the recommendation performance of the model. In this paper,
the experimental settings of Phung et al. (2016) are used to screen the projects and
select the project sets which has called 4, 6, 8 and 10 third-party libraries, respec-
tively. The experimental comparison results of KG2Lib and CrossRec on dataset2 is
shown in Fig. 5.

Figure 6 shows the success rate obtained by varying L. As it can be seen,
KG2Lib’s performance is proportional to L; the more densely (with respect to
dependencies) the projects are, the better performance KG2Lib achieves. For
instance, when only considering projects with at least 4 libraries, i.e., L = 4, the suc-
cess rate obtained for N = 10 is 0.93. However, if L is increased to 10, the corre-
sponding success rate improves to reach 0.989. The same trend can be witnessed by
other combinations of L and N.

4.3 Experimental comparison on dataset3

We compared dataset3 with LibCUP, CrossRec and KG2Lib by using different com-
binations of number of recommended libraries (N) varying N means changing the
length of the recommendation list, whereas increasing k means considering more
neighbor projects for the recommendation. The success rate of CrossRec, LibFinder
and KG2Lib on dataset3 is shown in Fig. 7.

When the cut-off value of the recommendation list is 1, the value of LibCUP is
0.12, the success rate of CrossRec is 0.21, and the success rate of KG2Lib is 0.23.
For other values of N, the performance of the method in this paper is also higher
than that of LibCUP and CrossRec. When developers hope to get ten libraries, the

0.75

0.8

0.85

0.9

0.95

1 2 4 6 8 10

L=4

CrossRec KG2Lib

0.85

0.9

0.95

1

1 2 4 6 8 10

L=6

CrossRec KG2Lib

0.9

0.95

1

1 2 4 6 8 10

L=8

CrossRec KG2Lib

0.9

0.95

1

1 2 4 6 8 10

L=10

CrossRec KG2Lib

Fig. 6 Success rate of CrossRec and KG2Lib on dataset2 with different number of libraries

 J. Zhao et al.

1 3

success rate of LibCUP, CrossRec and KG2Lib is 0.22, 0.42 and 0.49, respectively.
However, the success rate value is lower when compared with dataset2 and dataset1.
The reason is the scale of dataset3 is larger than the other two, which indicates that
with the increase in the dataset, the data sparsity problem has a negative influence
on recommendation model. This phenomenon is also the future research direction
of our work. But, according to the current experimental results, we can see that the
result tendency of KG2Lib is basically consistent with the other two datasets.

4.4 Other experiments

In addition, we evaluated the performance of LibRec, CrossRec and KG2Lib from
three aspects: coverage, entropy and novelty. In the three sets of experimental set-
tings, the number of recommended results is N = {5, 15, 25}. The number of pro-
jects included in neighbors is k = 10 and 20, respectively. According to the recom-
mended diversity formula, the recommended diversity is determined by the value
of coverage and entropy. The higher the value of coverage, the lower the entropy,
indicating that the third-party libraries recommended by the model is not limited
to a specific group of popular libraries. From the exp erimental results of various
indicators in Tables 11 and 12, the diversity value of KG2Lib is significantly higher
than that of LibRec and CrossRec. It shows that the recommended results of the
proposed method can cover more types of third-party libraries. The bold style of

0

0.1

0.2

0.3

0.4

0.5

0.6

1 3 5 7 10

su
cc

es
s r

at
e

cut-off value(N)

LibCUP CrossRec KG2Lib

Fig. 7 Success rate of LibCUP, CrossRec and KG2Lib on dataset3

Table 11 COV for N = {5, 15,
25}, k = {10, 20}

N K = 10 K = 20

LibRec CrossRec KG2Lib LibRec CrossRec KG2Lib

5 0.857 1.099 1.326 0.691 0.814 0.873
15 2.675 3.278 3.632 1.937 2.312 2.255
25 4.594 5.897 5.969 3.139 4.005 4.132

1 3

KG2Lib: knowledge‑graph‑based convolutional network for…

tha result in table shows that in differentt indicators and conditions, the method who
have achieved the best result.

EPC is an evaluation index used to evaluate the novelty of the model. A higher
EPC value indicates that the recommended third-party libraries are from “long tail
library set”, which are not so popular but highly correlated with the projects. By
comparing KG2Lib with the other two methods, Table 13 shows that the EPC value
of KG2L ib is higher than LibRec and CrossRec, the bold style of the result in table
shows that in differentt indicators and conditions, the method who have achieved
the best result. However, it can be found from the data in the observation table that
although the EPC value of KG2Lib is higher than the other two methods, it is not
much improved; this is also a direction for our future research work.

5 Conclusions

Software third-party libraries are important reusable software resources in software
development activities. Calling third-party libraries can reduce the workload of
developers and improve the software development efficiency. In this paper, we intro-
duce KG2Lib, a graph convolutional network for third-party library recommenda-
tion. KG2Lib introduces the knowledge graph to represent the relationship between
projects and libraries and enrich data information of the third-party libraries. The
vector representation of projects in the graph is obtained from the project level, and
the similarity between projects is calculated. According to the similarity values,
the top-N projects and the third-party libraries called by the projects are obtained,
and the collection of libraries to be recommended is constructed. Then, considering
whether a library in the library set can be recommended, the improved graph con-
volution network is adopted to learn the characteristics of the third-party libraries in
the graph, and recommend the third-party libraries to users more finely. The experi-
mental results verify the performance of the KG2Lib method proposed in this paper.
The methods proposed in this paper are better than the other current methods.

For the future work, more related information should be obtained to enrich the
library knowledge graph to obtain more diversified recommendation results. In addi-
tion, when developers expect to get more recommendation results, the success rate
of the method in this paper is lower than that of LibFinder. This requires us to fur-
ther improve the success rate of KG2Lib in recommending more results.

Acknowledgements This work is supported by the National Natural Science Foundation of China under
Grant Nos. 61862063, 61502413, 61262025; the National Social Science Foundation of China under

Table 12 FOC for N = {5, 15,
25}, k = {10, 20}

N K = 10 K = 20

LibRec CrossRec KG2Lib LibRec CrossRec KG2Lib

5 0.869 0.239 0.21 0.552 0.127 0.119
15 2.653 0.723 0.665 1.639 0.381 0.342
25 4.500 1.271 1.118 2.751 0.635 0.593

 J. Zhao et al.

1 3

Grant No. 18BJL104; the Science Foundation of Young and Middle-aged Academic and Technical Lead-
ers of Yunnan under Grant No. 202205AC160040; the Science Foundation of Yunnan Jinzhi Expert
Workstation under Grant No. 202205AF150006; the Natural Science Foundation of Key Laboratory
of Software Engineering of Yunnan Province under Grant No. 2020SE301; the Science Foundation of
“Knowledge-driven intelligent software engineering innovation team.”

Data availability statement All the datasets analyzed during the current study are available from the cor-
responding author on reasonable request.

References

 1. Alnusair A, Rawashdeh M, Alhamid MF, Hossain MA, Muhammad G (2016) Reusing software
libraries using semantic graphs. In: 2016 IEEE 17th international Conference on information reuse
and integration (IRI), pp 531–540. IEEE. doi: https:// doi. org/ 10. 1109/ IRI. 2016. 79

 2. Yang F, Hong M, Li K (1999) Software reuse and software component technology. Acta Electronica
Sinic A

 3. Bauer V, Heinemann L, Deissenboeck F (2012) A structured approach to assess third-party library
usage. IEEE. https:// doi. org/ 10. 1109/ ICSM. 2012. 64053 11

 4. Thung F, Lo D, Lawall J (2013) Automated library recommendation. Reverse Engineering. IEEE
 5. Nagarnaik P, Thomas A (2015) Survey on recommendation system methods. In: 2015 2nd interna-

tional Conference on electronics and communication systems (ICECS). IEEE, 2015, pp 1603–1608
 6. Wang X, Liu X, Liu J, Chen X, Wu H (2021) A novel knowledge graph embedding based API rec-

ommendation method for Mashup development. World Wide Web 24(3):869–894. https:// doi. org/
10. 1007/ s11280- 021- 00894-3

 7. Null LI, Han N (2021) A time-aware hybrid recommendation scheme combining content-based and
collaborative filtering. Front Comput Sci. https:// doi. org/ 10. 1007/ s11704- 020- 0028-7

 8. Chen J, Yu J, Lu W, Qian Y, Li P (2021) IR-Rec: an interpretive rules-guided recommendation over
knowledge graph. Inf Sci 563:326–341. https:// doi. org/ 10. 1016/j. ins. 2021. 03. 004

 9. Pan H, Yang X (2021) Intelligent recommendation method integrating knowledge graph and Bayes-
ian network. Soft Comput, pp 1–10. doi:https:// doi. org/ 10. 1007/ s00500- 021- 05735-z

 10. Yang Z, Dong S (2020) HAGERec: hierarchical attention graph convolutional network incorporat-
ing knowledge graph for explainable recommendation. Knowl-Based Syst 204:106194. https:// doi.
org/ 10. 1016/j. knosys. 2020. 106194

 11. Ohtomo K, Harakawa R, Ogawa T, Haseyama M, Iwahashi M (2021) Personalized recommendation
of tumblr posts using graph convolutional networks with preference-aware multimodal features. ITE
Trans Media Technol Appl 9(1):54–61. https:// doi. org/ 10. 3169/ mta.9. 54

 12. Zhong T, Zhang S, Zhou F, Zhang K, Trajcevski G, Wu J (2020) Hybrid graph convolutional net-
works with multi-head attention for location recommendation. World Wide Web 23(6):3125–3151.
https:// doi. org/ 10. 1007/ s11280- 020- 00824-9

 13. Zheng Y, Gao C, He X, Li Y, Jin D (2020) Price-aware recommendation with graph convolutional
networks. In: 2020 IEEE 36th international Conference on data engineering (ICDE). IEEE, pp
133–144

Table 13 EPC for N = {5, 15,
25}, k = {10, 20}

N K = 10 K = 20

LibRec CrossRec KG2Lib LibRec CrossRec KG2Lib

5 0.187 0.291 0.311 0.114 0.292 0.302
15 0.296 0.376 0.388 0.204 0.377 0.381
25 0.349 0.401 0.416 0.261 0.416 0.421

https://doi.org/10.1109/IRI.2016.79
https://doi.org/10.1109/ICSM.2012.6405311
https://doi.org/10.1007/s11280-021-00894-3
https://doi.org/10.1007/s11280-021-00894-3
https://doi.org/10.1007/s11704-020-0028-7
https://doi.org/10.1016/j.ins.2021.03.004
https://doi.org/10.1007/s00500-021-05735-z
https://doi.org/10.1016/j.knosys.2020.106194
https://doi.org/10.1016/j.knosys.2020.106194
https://doi.org/10.3169/mta.9.54
https://doi.org/10.1007/s11280-020-00824-9

1 3

KG2Lib: knowledge‑graph‑based convolutional network for…

 14. Zheng Y, Gao C, He X, Li Y, Jin D (2020a) Price-aware recommendation with graph convolutional
networks. In: 2020 IEEE 36th international Conference on data engineering (ICDE). IEEE, pp
133–144

 15. Katsuragawa D, Ihara A, Kula RG, Matsumoto K (2018) Maintaining third-party libraries through
domain-specific category recommendations. In: 2018 IEEE/ACM 1st international workshop on
software health (SoHeal), pp 2–9. IEEE

 16. Sun X, Xu C, Li B, Duan Y, Lu X (2019) Enabling feature location for API method recommenda-
tion and usage location. IEEE Access 7:49872–49881

 17. Sun Z, Liu Y, Cheng Z, Yang C, Che P (2020) Req2Lib: a semantic neural model for software
library recommendation. In: 2020 IEEE 27th international Conference on software analysis, evo-
lution and reengineering (SANER), pp 542–546. IEEE. doi:https:// doi. org/ 10. 1109/ SANER 48275.
2020. 90548 65

 18. Xu C, Sun X, Li B, Lu X, Guo H (2018) MULAPI: Improving API method recommendation with
API usage location. J Syst Softw 142:195–205. https:// doi. org/ 10. 1016/j. jss. 2018. 04. 060

 19. Deshpande N, Mkaouer MW, Ouni A, Sharma N (2022) Search-based third-party library migration
at the method-level. In: International Conference on the applications of evolutionary computation
(Part of EvoStar). Springer, Cham, pp 173–190

 20. Ouni A, Kula RG, Kessentini M, Ishio T, German DM, Inoue K (2017) Search-based software
library recommendation using multi-objective optimization. Inf Softw Technol 83:55–75. https://
doi. org/ 10. 1016/j. infsof. 2016. 11. 007

 21. Zhao X, Li S, Yu H, Wang Y, Qiu W (2019) Accurate library recommendation using combining col-
laborative filtering and topic model for mobile development. IEICE Trans Inf Syst 102(3):522–536.
https:// doi. org/ 10. 1587/ trans inf. 2018E DP7227

 22. D’Souza AR, Yang D, Lopes CV (2016) Collective intelligence for smarter API recommenda-
tions in python. In: 2016 IEEE 16th international working Conference on source code analysis
and manipulation (SCAM). IEEE, pp 51–60

 23. Yun W, Zhang X, Li Z, Liu H, Han M (2021) Knowledge modeling: a survey of processes and
techniques. Int J Intell Syst 36(4):1686–1720

 24. Heiko P (2016) Knowledge graph refinement: a survey of approaches and evaluation methods.
Semantic Web 8(3):489–508. https:// doi. org/ 10. 3233/ SW- 160218

 25. Wang HM, Nie GH (2007) Research on collaborative filtering algorithm based on fusing user
and item’s correlative information. J Wuhan Univ Technol

 26. Lei R, Gu J, Xia W (2010) An item-based collaborative filtering algorithm utilizing the average
rating for items. In: Signal processing & multimedia-international Conferences. DBLP

 27. Liu A, Li B (2015) Collaborative filtering algorithm based on the similarity of user ratings and
item attributes. In: 2015 3rd international Conference on mechatronics and industrial informatics
(ICMII 2015). Atlantis Press, pp 451–455

 28. Guan Z (2018) Multi-feature collaborative filtering recommendation for sparse dataset. Springer,
Cham

 29. Jiang B, Yang J, Qin Y, Wang T, Wang M, Pan W (2021a) A service recommendation algorithm
based on knowledge graph and collaborative filtering. IEEE Access 9:50880–50892. https:// doi.
org/ 10. 1109/ ACCESS. 2021. 30685 70

 30. Zhang L, Li X, Li W, Zhou H, Bai Q (2021) Context-aware recommendation system using
graph-based behaviours analysis. J Syst Sci Syst Eng 30(4):482–494. https:// doi. org/ 10. 1007/
s11518- 021- 5499-z

 31. Dong B, Zhu Y, Li L, Wu X (2021) Hybrid collaborative recommendation of co-embedded item
attributes and graph features. Neurocomputing 442:307–316. https:// doi. org/ 10. 1016/j. neucom.
2021. 01. 129

 32. Zhang Y, Wang J, Luo J (2020) Knowledge graph embedding based collaborative filtering. IEEE
Access, 2020. https:// doi. org/ 10. 1109/ ACCESS. 2020. 30111 05

 33. Yu B, Zhou C, Zhang C, Wang G, Fan Y (2020) A privacy-preserving multi-task framework for
knowledge graph enhanced recommendation. IEEE Access 8:115717–115727

 34. Dang D, Chen C, Li H, Yan R, Guo Z, Wang X (2021) Deep knowledge-aware framework for
web service recommendation. J Supercomput 77(12):14280–14304

 35. Zhang Y, Wang J, Luo J (2020) Knowledge graph embedding based collaborative filtering. IEEE
Access, 2020

 36. Mei D, Huang, Li X (2021) Light graph convolutional collaborative filtering with multi-aspect
information. IEEE Access, 2021, doi:https:// doi. org/ 10. 1109/ ACCESS. 2021. 30619 15

https://doi.org/10.1109/SANER48275.2020.9054865
https://doi.org/10.1109/SANER48275.2020.9054865
https://doi.org/10.1016/j.jss.2018.04.060
https://doi.org/10.1016/j.infsof.2016.11.007
https://doi.org/10.1016/j.infsof.2016.11.007
https://doi.org/10.1587/transinf.2018EDP7227
https://doi.org/10.3233/SW-160218
https://doi.org/10.1109/ACCESS.2021.3068570
https://doi.org/10.1109/ACCESS.2021.3068570
https://doi.org/10.1007/s11518-021-5499-z
https://doi.org/10.1007/s11518-021-5499-z
https://doi.org/10.1016/j.neucom.2021.01.129
https://doi.org/10.1016/j.neucom.2021.01.129
https://doi.org/10.1109/ACCESS.2020.3011105
https://doi.org/10.1109/ACCESS.2021.3061915

 J. Zhao et al.

1 3

 37. Zhang Z, Bu J, Li Z, Yao C, Wang C, Wu J (2021) TigeCMN: on exploration of temporal interac-
tion graph embedding via coupled memory neural networks. Neural Netw 140:13–26. https:// doi.
org/ 10. 1016/j. neunet. 2021. 02. 016

 38. Saied MA, Ouni A, Sahraoui H, Kula RG, Inoue K, Lo D (2018) Improving reusability of soft-
ware libraries through usage pattern mining. J Syst Softw 145:164–179. https:// doi. org/ 10.
1016/j. jss. 2018. 08. 032

 39. Nguyen PT, Di Rocco J, Di Ruscio D, Di Penta M (2020) CrossRec: supporting software devel-
opers by recommending third-party libraries. J Syst Softw 161:110460

 40. Chen J, Li B, Wang J, Zhao Y, Yao L, Xiong Y (2020) Knowledge graph enhanced third-party
library recommendation for mobile application development. IEEE Access 8:42436–42446

 41. Noia TD, Ostuni VC (2015) Recommender systems and linked open data. In: Proceedings of the
11th international summer school reasoning web. web logic rules, Berlin, Germany, July 31–
August 4, 2015, Tutorial Lectures, pp 88–113. doi: https:// doi. org/ 10. 1007/ 978-3- 319- 21768-0_4

 42. Hell F, Taha Y, Hinz G, Heibei S, Müller H, Knoll A (2020) Graph convolutional neural network
for a pharmacy cross-selling recommender system. Information 11(11):525. https:// doi. org/ 10.
3390/ info1 11105 25

 43. Yin C, Shi L, Sun R, Wang J (2020) Improved collaborative filtering recommendation algorithm
based on differential privacy protection. J Supercomput 76(7):5161–5174

 44. Tran DH, Sheng QZ, Zhang WE, Aljubairy A, Zaib M, Hamad SA, Khoa NLD (2021) HeteGraph:
graph learning in recommender systems via graph convolutional networks. Neural Comput Appl, pp
1–17

 45. Robillard M, Walker R, Zimmermann T (2010) Recommendation systems for software engineering.
IEEE Softw 27(4):80–86

 46. Jiang Y, Ma H, Liu Y, Li Z, Chang L (2021) Enhancing social recommendation via two-level graph
attentional networks. Neurocomputing 449:71–84. https:// doi. org/ 10. 1016/j. neucom. 2021. 03. 076

 47. Vargas S, Castells P (2014) Improving sales diversity by recommending users to items. In: Proceed-
ings of the eighth ACM Conference on recommender systems, RecSys ’14, Foster City, Silicon Val-
ley, CA, USA–October 06–10, 2014, pp 145–152

 48. Blei DM, Ng A, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res. https:// doi. org/ 10.
1162/ jmlr. 2003.3. 4-5. 993

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

https://doi.org/10.1016/j.neunet.2021.02.016
https://doi.org/10.1016/j.neunet.2021.02.016
https://doi.org/10.1016/j.jss.2018.08.032
https://doi.org/10.1016/j.jss.2018.08.032
https://doi.org/10.1007/978-3-319-21768-0_4
https://doi.org/10.3390/info11110525
https://doi.org/10.3390/info11110525
https://doi.org/10.1016/j.neucom.2021.03.076
https://doi.org/10.1162/jmlr.2003.3.4-5.993
https://doi.org/10.1162/jmlr.2003.3.4-5.993

	KG2Lib: knowledge-graph-based convolutional network for third-party library recommendation
	Abstract
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Input preprocessing
	3.2 KG2Lib model
	3.3 Experimental evaluation
	3.4 Dataset processing
	3.5 Model implementation
	3.6 Evaluation metrics

	4 Experimental evaluation
	4.1 Experimental comparison on dataset1
	4.2 Experimental comparison on dataset2
	4.3 Experimental comparison on dataset3
	4.4 Other experiments

	5 Conclusions
	Acknowledgements
	References

