
Received: 13 January 2018 Revised: 30 May 2018 Accepted: 12 July 2018

DOI: 10.1002/smr.1991
R E S E A R CH AR T I C L E ‐ METHODOLOGY
Trustworthiness requirement‐oriented software process
modeling

Xuan Zhang1,2† | Xu Wang3† | YanNi Kang1
1School of Software, Yunnan University,

Kunming, Yunnan, China

2Key Laboratory of Software Engineering of

Yunnan, Kunming, Yunnan, China

3School of Economics, Yunnan University,

Kunming, Yunnan, China

Correspondence

Xuan Zhang, School of Software, Yunnan

University, Kunming, Yunnan 650091, China.

Email: zhxuan@ynu.edu.cn

Funding information

National Natural Science Foundation of China,

Grant/Award Numbers: 61862063,

61502413, 61262025, 61379032 and

61662085; National Social Science Founda-

tion of China, Grant/Award Number:

18BJL104; Natural Science Foundation of

Yunnan Province, Grant/Award Number:

2016FB106; Natural Science Foundation of

Yunnan Educational Committee, Grant/Award

Number: 2015Z020; Natural Science Founda-

tion of Key Laboratory of Software Engineer-

ing of Yunnan Province, Grant/Award

Number: 2015SE202; Data‐Driven Software

Engineering Innovative Research Team

Funding of Yunnan Province, Grant/Award

Number: 2017HC012; Software Engineering

Innovative Research Team Funding of Yunnan

University
†These authors contributed equally to this work.

J Softw Evol Proc. 2018;30:e1991.
https://doi.org/10.1002/smr.1991
Abstract

Trustworthy software is delivered by enacting trustworthy software processes. The

purpose of this paper is to propose an approach to modeling trustworthiness require-

ment‐oriented software processes. First, based on the aspect‐oriented modeling

techniques, separation of concerns is used to separate the crosscutting activities

and the core activities according to the different trustworthiness requirements and

functional requirements. A goal‐oriented modeling and reasoning method for

trustworthiness requirements to find the crosscutting activities that satisfy multiple

trustworthiness requirements is presented. Then, base processes are modeled for

functional requirements. The crosscutting activities for trustworthiness requirements

are decomposed into processes or tasks and encapsulated in aspects that are woven

into the base processes. In the weaving procedure, correct weaving methods

between multiple aspects and between aspects and base processes are designed.

Errors or mistakes of aspect‐oriented process modeling are prevented. Finally, trust-

worthy third‐party certification authority software is studied systematically in a case

study, and performance evaluations are conducted to show the cost and effect of the

approach.

KEYWORDS

aspect‐oriented modeling, goal‐oriented modeling, Petri nets, software process modeling, software

trustworthiness requirement
1 | INTRODUCTION

Our daily lives and industrial processes are heavily reliant on a wide range of underpinning software. Therefore, addressing the trustworthiness of

software is a pressing need. Software development and evolution are process‐intensive undertakings. Delivering trustworthy software requires

the enactment of trustworthy software processes.1 The degree of confidence that a software process produces expected trustworthy products

that satisfy their requirements is also critical and is called the process trustworthiness.1 In this paper, we focus on how to model a trustworthy

software process and ensure the process trustworthiness.

The issues that motivated our study include the following:

• Current techniques focus on the implementation of individual requirements for trustworthy software. In addition, many of the techniques

required to enforce one non‐functional requirement (NFR) of trustworthy software undermine the enforcement of others.2 Techniques that

support the development of systems that satisfy multiple requirements are needed.
© 2018 John Wiley & Sons, Ltd.wileyonlinelibrary.com/journal/smr 1 of 28

http://orcid.org/0000-0003-2929-2126
mailto:zhxuan@ynu.edu.cn
https://doi.org/10.1002/smr.1991
https://doi.org/10.1002/smr.1991
http://wileyonlinelibrary.com/journal/smr
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fsmr.1991&domain=pdf&date_stamp=2018-10-15

2 of 28 ZHANG ET AL.
• Traditional software process activities are designed for functional requirements. For trustworthy software requirements, the specified

activities must be provided and integrated into the traditional software processes. Additionally, these two types of activities should not be

tangled in the software processes. Because of the volatile requirements, flexible and maintainable process modeling is also required.

• When integrating trustworthy software activities into a software process, the execution of the process must not be interrupted, and the trust-

worthy software activities must validly provide the expected trustworthiness capability. Therefore, ensuring the correctness of the integrated

process models is a prerequisite for process trustworthiness.

An approach to modeling the trustworthiness requirement‐oriented software process (TROSP) and the corresponding methods for ensuring

the correctness of the modeling are presented in this paper. Petri net extended with aspect‐oriented modeling is used as the process modeling

language. The analysis techniques of Petri nets are applied to analyze the correctness of the modeling. Compared with other process‐modeling

languages, Petri nets provide the following advantages:

• Petri nets are well‐founded process modeling techniques. A process specified in Petri net languages has a clear and precise definition since the

semantics of the Petri nets have been formally well defined.3

• Causal dependencies and interdependencies in some sets of events are represented explicitly.

• Petri net representations allow model properties to be verified and correctness proofs to be performed in a specific way.4

• Petri nets serve more as a modeling language and an analysis or verification tool, and its main contribution is to cybernetics. The motivation of

research on software cybernetics is to explore whether and how software behavior can be controlled in the software, including software

processes and software systems.5

Separation of concerns is used to separate crosscutting and core activities. In this paper, crosscutting activities are trustworthy software

activities, whereas core activities are traditional activities for functional requirements. An aspect‐oriented paradigm is used to provide a proper

mechanism for modularization, thus reducing the model complexity while improving flexibility and maintainability.

The remainder of this paper is organized as follows. Section 2 introduces the method for obtaining trustworthy software activities through

goal‐oriented modeling and reasoning. Section 3 details the framework and workflow for modeling TROSPs. In Section 4, we illustrate a case

study for modeling the processes of trustworthy third‐party certification authority software. Section 5 evaluates the method by comparing effec-

tiveness and efficiency and describes the limitations of the method. Section 6 describes related work. Section 7 concludes with the contributions

of our work.
2 | GOAL‐ORIENTED MODELING AND REASONING FOR TRUSTWORTHINESS
REQUIREMENTS

Trustworthy software is required in a variety of systems—military, aviation, transportation, financial, medical, etc.—and must satisfy a variety of

requirements.2 In Trusted Software Methodology,6 software trustworthiness is the “degree of confidence that the software satisfies its require-

ments.” Therefore, trustworthy software is defined as software that satisfies the range of trustworthiness objectives established based on its

requirements.1

Requirements for trustworthy software consist of both functional requirements and NFRs. Since goal‐oriented models have been widely

advocated for early requirements modeling, we use the term hard goal to denote a functional requirement and the terms trustworthiness goal

and soft goal to denote NFRs. Hard goals are functional requirements that must be strictly implemented as the most critical requirements for trust-

worthy software. Non‐functional requirements of trustworthy software are divided into trustworthiness goals and soft goals. Trustworthiness

requirements (TRs) are a specific set of trustworthiness attributes for a particular trustworthy software development project. In other words,

TRs are circumstance‐dependent requirements that satisfy the stakeholders' set of trustworthiness expectations. Depending on the stakeholder's

value propositions and negotiation results, TRs are part of the NFRs, such as reliability, safety, security, portability, and maintainability. Soft goals

are not trustworthiness goals but are related to the qualities of the trustworthy software. The hard goals and trustworthiness goals are combined

to form the TRs, as depicted in Figure 1. Since poor quality software is not trustworthy software, the soft goals define the trustworthy software

quality requirements.

The understanding of trustworthiness goals has differed over time. Table 1 is an extension of the table from Zhang's attributes of trustworthy

software systems.20

As shown in Table 1, trustworthiness is a holistic property, which means that the methods for building trustworthy software must satisfy

multiple trustworthiness goals.

In a specific software project, the stakeholders are the providers and evaluators of the requirements. However, the requirements of the

stakeholders vary according to their different roles, responsibilities, and experiences. The interactive and iterative Delphi method21 is useful for

reconciling the trustworthiness goals of multiple stakeholders and achieving consensus.

FIGURE 1 Goal‐oriented trustworthy software requirement

TABLE 1 The understanding of trustworthiness goals

Source Trustworthiness Goals

TCSEC (trusted computer system evaluation criteria) 7 Security (confidentiality, authenticity, accountability)

Dependability in IEC 60050‐1928 Reliability, availability, recoverability, maintainability, maintenance support
performance, durability, safety, security

TSM (Trusted Software Methodology)6 Security, reliability (availability)

Microsoft9,10 Reliability, security, privacy, business integrity

TCG (Trustworthy Computing Group)11 Security, maintainability

Littlewood, Schmidt12,13 Reliability, safety, robustness, availability, security

DARPA's CHATS (Defense Advanced Research Projects
Agency's composable high‐assurance trustworthy
systems)14

Security (integrity, confidentiality, authentication, authorization, accountability),
reliability (fault tolerance), performance (time‐behavior, capacity), survivability

NSS2 (the second National Software Summit)15 Security, safety, reliability, survivability, performance

TrustSoft (TrustSoft Graduate School in University of
Oldenburg)16,17

Correctness, safety, quality of service (performance, reliability, availability),
security, privacy

COMPSAC (International Computer Software and
Applications Conference)18

Availability, reliability, security, survivability, recoverability, confidentiality,
integrity

ICSP (International Conference on Software Process)1 Functionality, reliability, safety, usability, security, portability, maintainability

Trustie‐STC 1.0 (Software Trustworthiness
Classification Specification)19

Availability, reliability, security, real time, maintainability, survivability

ZHANG ET AL. 3 of 28
Once the software trustworthiness goals are agreed upon, the problem of how to ensure trustworthiness must be addressed. Two possible

approaches exist. In the first approach, the emphasis is on techniques for developing and examining software products directly. In the second

approach, the emphasis is on the processes used to create these products.6 The primary benefit of focusing on techniques is that abundant useful

information that is familiar to most programmers, engineers, and managers can be easily obtained. However, the emphasis on process comple-

ments these techniques by focusing on the manner in which they are performed during the actual development lifecycle. In addition, a process

emphasis allows for the reuse of valuable previous experiences.

In the following, from the process perspective, goal‐oriented modeling is used to find trustworthiness goal‐oriented activities (TG_activities) to

model TROSPs.
2.1 | Trustworthiness goal‐oriented modeling

Trustworthy software is required in a variety of systems filtering numerous studies, including Lyu's and Musa's software reliability engineer-

ing,22,23 Anderson's and Howard's security engineering,9,10,24 Ericson's and US DoD's safety engineering,25,26 Nielsen's usability engineering,27

Boehm's process strategies,28 and security‐related activities in the software assurance maturity model.29 Table 2 lists these TG_activities.

The enforcement of eachTG_activity implements a specific trustworthiness goal. However, this enforcement may undermine the other trust-

worthiness goals or soft goals. For example, the enforcement of a Fault‐Tolerance Design activity for reliability improves usability but undermines

functional correctness. Therefore, we need to find a set of TG_activities that satisfies multiple goals, including trustworthiness goals and soft

goals. By borrowing concepts from goal‐oriented requirements modeling, a trustworthiness requirements meta‐model (TRMM) is designed, as

shown in Figure 2.

TABLE 2 Trustworthiness goals‐oriented activities

Trustworthiness Goals TG_Activities

Functional completeness
and correctness

Analyze and assess user characteristics, analyze and assess software context, functionality analysis,
validation and verification of requirements, validation and verification of design, data type checking,
proof of program correctness, code review.

Reliability Define functional profile, define and classify failure, reliability requirement identification and acquisition,
reliability modeling, reliability analysis, fault tree analysis, reliability forecasting, reliability testing of
off‐the‐shelf and outsourcing software, reliability planning, reliability deploying, use software reliability
design criteria, fault/failure forecasting design, fault prevention design, error correction design, fault
tolerance design, redundancy design, maintainability design, reliability‐optimized design, determine the
engineering measures for reliability goals, software reliability growth modeling, define resource
deployment based on functional profile, failure testing, software reliability growth testing, stress testing,
regression testing, software reliability verification, create maintenance scheme, software reliability
monitoring, satisfaction tracking of reliability, continuous process improvement, reliability measurement,
reliability engineering management, management of failure introduction and propagation, reliability
management of off‐the‐shelf and outsourcing software, establish incident response plan, execute incident
response plan.

Safety Software safety plan, establish SSP (system safety program), identify hazards, assess hazard risk, document
SSP, determine acceptable hazard level, use hazard mitigation methods, determine order of hazard mitigation
precedence, proof of program correctness, redundancy design, validation and verification of risk reduction,
hazard and risk review, establish HTS (hazard tracking system), establish HARs (hazard action records),
safety monitoring.

Security Define minimum security criteria, create quality gates/bug bars, perform security and privacy risk assessment,
define misuse cases, security asset and boundary identification, security strategy identification, security
techniques assessment, integrate security analysis into resource management process, establish security and
privacy design requirements, perform security and privacy design review, code review, satisfy minimum
cryptographic design requirements, analyze attack surface, threat modeling, create incident response plan,
security testing, deprecate unsafe functions, static analysis, dynamic analysis, fuzz testing, penetration testing,
attack surface review, execute incident response plan, vulnerability management.

Accuracy Accuracy boundary identification, define and classify accuracy, solve inaccuracy, reconstruction from
approximation to accuracy, accuracy design, document accuracy requirements.

Maintainability Maintenance design, cohesion design, abstraction design, more access interface design, maintainability
assessment, create maintenance scheme, collect and analyze software execution data, continuous process
improvement, maintenance qualities management.

Compatibility Collaboration analysis, financial impact analysis, compatibility modeling and forecasting, interaction interface
design, multi‐domain architecture design, compatibility test.

Usability User characteristics analysis, functionality analysis, competitive analysis, financial impact analysis, parallel
design, participatory design, coordinated design of the interface, iterative design, more options design,
fault‐tolerance design, heuristic analysis, prototyping, empirical testing, collect feedback from field use.

Performance efficiency Determine performance baseline, performance modeling and analysis, prototyping, performance simulation,
performance tuning, user coordinated testing.

FIGURE 2 Trustworthiness requirements meta‐model (TRMM)

4 of 28 ZHANG ET AL.
In theTRMM, theTR boundary shows that the emphasis of the model is theTRs. TheTG_activities are enforced to implement trustworthiness

goals. As mentioned above, the enforcement of someTG_activities may undermine some other trustworthiness goals. In Figure 2, the contribution

links represent these relations and connect the TG_activities and the affected trustworthiness goals with dashed lines. Since the soft goals are

trustworthy software quality requirements, the effects on the soft goals are also depicted with dashed lines. In addition, the Soft Goal Monitoring

activity implements the quality monitoring for each soft goal to avoid the poor quality that may be caused by the TG_activities. Based on the

ZHANG ET AL. 5 of 28
decompositions of the NFRs, the trustworthiness and soft goals can be decomposed into subgoals. The base processes are the processes that

implement the hard goals and will be integrated with the TG_activities. Formally, we define the TRMM as follows:
Definition 1. (TRMM). A TRMM is a 2‐tuple TRMM = (N, R), where:

(1) N = TG ∪ SG ∪ TA is a set of nodes, where
• TG is a set of trustworthiness goals, and TG ≠ ∅;

• SG is a set of soft goals;

• TA is a set of trustworthiness goal‐oriented activities (TG_activities), and TA ≠ ∅;
(2) R = Rdec ∪ Rimp ∪ Rctr is a set of binary relations of nodes, where:
• Rdec ⊆ (TG × TG) ∪ (SG × SG) ∪ (TA × TA)is a decomposition relations set, where:

• TG × TG = {(tg, tg′)| tg, tg′ ∈ TG ∧ tg decompose into tg′}, and tg′ is a subnode of tg;

• SG × SG = {(sg, sg′)| sg, sg′ ∈ SG ∧ sg decompose into sg′}, and sg′ is a subnode of sg;

• TA × TA = {(ta, ta′)| ta, ta′ ∈ TA ∧ ta decompose into ta′}, and ta′ is a subnode of ta;

• Rimp ⊆ TG × TA is an implementation relation set between the trustworthiness goal set TG and the TG_activity set TA;Rimp = {(tg, ta)|

tg ∈ TG ∧ ta ∈ TA ∧ ta implements tg};

• Rctr ⊆ (TA × TG) ∪ (TA × SG) is aTG_activities' contribution relation set, that is, in relation to a trustworthiness goal set TG or a soft goals

set SG; ∀r ∈ Rctr, r ↦ {+, −} (↦ is used as a mapping from a relation to a member of a set); + is a positive contribution relation, whereas − is

a negative contribution relation:

• TA × TG = {(ta, tg)| ta ∈ TA ∧ tg ∈ TG ∧ (ta, tg) ↦ {+, −}} are positive or negative contribution relations from a TG_activity set to a trust-

worthiness goal set;

• TA × SG = {(ta, sg)| ta ∈ TA ∧ sg ∈ SG ∧ (ta, sg) ↦ {+, −}} are positive or negative contribution relations from aTG_activities set to a soft

goal set;

(3) trm is a trustworthiness requirements model (TRM) that is modeled by using the TRMM.
When using the TRMM to model a TRM, constraints on the nodes and relations must be obeyed.
Constraint 1. (Node Constraint). Let trm = (N, R) be a TRM, then dom(r) = {x ∈ N| ∃y ∈ N : (x, y) ∈ r, r ∈ R}, cod(r) = {x ∈ N| ∃

y ∈ N : (y, x) ∈ r, r ∈ R}, and dom(r) ∪ cod(r) = N.
Constraint 1 prevents all nodes in aTRM from being isolated. An isolated trustworthiness goal means that the modeling procedure is not com-

plete because it must be implemented by at least oneTG_activity. An isolated TG_activity means that theTRM is not correct because it must have

at least one implementation relation to a trustworthiness goal. An isolated soft goal should be deleted because there is no contribution relation

from any TG_activities, and thus it can be assumed to be satisfied.
Constraint 2. (Relation constraint). Let trm = (N, R) be a TRM; tg ∈ TG is a trustworthiness goal, ta ∈ TA is a TG_activity, and

(ta, tg) ∈ Rimp; there is no (ta, tg) ∈ Rctr.
Constraint 2 states that if there is an implementation relation between a TG_activity and a trustworthiness goal, there is no contribution

relation between them.

A base software process in the TRMM is a software process that is created for the functional requirements. It is an extended Petri net,30 as

defined in Definition 2 and 3. For the sake of simplicity, in the following, base process is used to denote base software process.
Definition 2. (Base process). A base process is a 4‐tuple p = (C,A; F ,M0), where (1) (C,A; F) is a Petri net without isolated

elements, A ∪ C ≠ ∅; (2) C is a finite set of conditions; (3) A is a finite set of activities; the execution of an activity is called

that an activity fires or is enabled; (4) F ⊆ (C × A) ∪ (A × C) is the flow relation; dom(F) ∪ cod(F) = C ∪ A, where

dom(F) = {x ∈ C ∪ A| ∃y ∈ C ∪ A : (x, y) ∈ F }, cod(F) = {x ∈ C ∪ A| ∃y ∈ C ∪ A : (y, x) ∈ F }; (5) M0 is the initial marking, where a marking

is a mapping M: C ↦ {0, 1}.
A Petri net is a set of nodes and arcs. There are two types of nodes: places and transitions, which represent the state of the system and

the occurrence of events, respectively. Arcs are directed and connect places with transitions or transitions with places. In Definition 2, a con-

dition in a base process is a place in Petri nets. An activity is a transition, and a flow relation is an arc in Petri nets. The definitions in terms of

conditions, activities, and flow relations are for a better understanding of software processes. The state of a base process is defined by a mark-

ing, which puts zero or one token (graphically represented by a dot) on each condition. The firing process induces a token's flow among

conditions; when an activity fires, tokens from all its input conditions are moved to the activity output conditions. An activity can only be fired

if there are tokens at its input conditions.

6 of 28 ZHANG ET AL.
The activities in base processes, the TG_activities, and the soft goal monitoring activity are all the activities in software processes. The

definitions of these activities are identical. Since we focus on the TG_activities, the definitions of these three types of activities coalesce formally

into Definition 3.
Definition 3. (TG_Activity). A TG_activity is a 4‐tuple ta = (I,O, L, B), where (1) I, O, and L are a set of input artifacts, a set of output

artifacts, and a set of local artifacts, respectively, and (2) B, called the TG_activity body, is either a trustworthiness goal‐oriented

process (TG_process) or a set of trustworthiness goal‐oriented tasks (TG_tasks) that operates on the artifacts I, O, and L.
To integrate the TG_activities into base processes, aspect‐oriented modeling method is used. When a TG_activity is decomposed into a

TG_process or a set of TG_tasks, the TG_process or each TG_task is defined as an advice and encapsulated in an aspect. All of the encapsulated

aspects are then woven into the base processes and base tasks. The details of the aspect‐oriented modeling method will be described in Section 3.

Since the enforcement of a TG_activity may undermine the satisfaction of the other trustworthiness goals or soft goals, before defining and

weaving the aspects into the base processes or base tasks, trustworthiness goal‐oriented reasoning is performed.

2.2 | Trustworthiness goal‐oriented reasoning

Let trm = (N, R) be a TRM and n ∈ N be a node in m; four distinct status labels of nodes are introduced.
Definition 4. (Status Label). A status label is a first order predicate SL(n) : ≔ SA(n) ∣ PS(n) ∣ PD(n) ∣ DE(n), where ∀n ∈ N (N is the

set of nodes defined in Definition 1). SA (n) denotes the satisfaction of node n. PS (n) denotes the partial satisfaction of node n. PD

(n) denotes the partial denial of node n. DE (n) denotes the denial of node n.
Given a TRM, propagation reasoning for contribution links occurs in two directions. One is the forward direction, which reasons from

TG_activities to trustworthiness and soft goals, whereas the other is the opposing backward direction. These are called forward reasoning and

backward reasoning. Forward reasoning starts with an analysis question of the form “How effective is a TG_activity with respect to the trustwor-

thiness and soft goals in the model?”.31 However, we want to be able to answer questions such as “If certain trustworthiness and soft goals need

to be satisfied, what TG_activities in the model would satisfy these goals?” One way of using forward reasoning is to apply the procedure repeat-

edly and exhaustively for all reasonableTG_activities until either the desired values for goals are produced, or not. This method is tedious and labo-

rious, especially for large models with many nodes.31 Conversely, backward reasoning starts with the trustworthiness and soft goals and works

down the relations in the model to find potential satisfied TG_activities.

An early version of backward reasoning was described by Sebastiani et al.32 We have borrowed our general conjunctive normal form (CNF)

formulation and part of the analysis predicates from this work. However, we made several modifications because the satisfied status of

TG_activity n is only satisfaction SA (n) or denial DE (n).
Constraint 3. (TG_Activity Status Label Constraint). Let trm = (N, R) be aTRM, ∀ta ∈TA, and TA ⊆ N, then SL(ta) : ≔ SA(ta) ∣ DE(ta).
To formalize the propagation of satisfaction and denial evidence through the TRM, two fundamental axioms are introduced. The relation

axioms and backward propagation axioms are presented in Table 3.

Fundamental axiom : ∀n ∈N SA nð Þ→PS nð Þ FA1

DE nð Þ→PD nð Þ FA2

The fundamental axiom states that satisfaction and denial imply partial satisfaction and partial denial, respectively.

The backward reasoning encodes a TRM in CNF that iteratively applies a propositional satisfiability (SAT) solver to search for an acceptable

solution. SAT is the problem of determining whether a Boolean formula ϕ admits at least one satisfying truth assignment to its input values.32 To

express the problem of assigning status labels to a TRM in terms of a CNF SAT formula, we follow the formalization in Sebastiani et al.32 The SAT

formula is constructed as follows:

ϕ::¼ϕInitial ∧ϕModel ∧ϕConstraint ∧ϕConflict (1)

ϕInitial is a representation of the input values that can be assigned to the trustworthiness goals and the soft goals. It is written in the form

ϕInitial::¼∧n∈N SL nð Þ: (2)

ϕModel is the representation of a TRM, given in the form

ϕModel::¼∧n;ni ∈N ¬SL nð Þ∨ ∨ n;nið Þ∈RSL nið Þ� �� �
: (3)

ϕConstraint and ϕConflict are optional components. ϕConstraint allows the imposition of some constraints on the possible values of the nodes.

ϕConstraint ::¼ ∧n∈N LL nð Þj∨n∈NLL nð Þð Þ (4)

LL nð Þ ::¼ SL nð Þ∣¬SL nð Þ;¬SL nð Þ↦ ¬SA nð Þ;¬PS nð Þ;¬PD nð Þ;¬DE nð Þf g

TABLE 3 Axioms for backward reasoning

Relation Status Relation Axioms Backward Propagation Axioms

Rdec SA ∧ki¼1SA nið Þ→SA nð Þ RA1 SA nð Þ→∧ki¼1SA nið Þ BA1

PS ∧ki¼1PS nið Þ→PS nð Þ RA2 PS nð Þ→∧ki¼1PS nið Þ(ni ∈ TG ∪ SG) BA2

PD ∨ki¼1PD nið Þ→PD nð Þ RA3 PD nð Þ→∨ki¼1PD nið Þ(ni ∈ TG ∪ SG) BA3

DE ∨ki¼1DE nið Þ→DE nð Þ RA4 DE nð Þ→∨ki¼1DE nið Þ BA4

Rimp SA ∧ki¼1SA nið Þ→SA nð Þ RA5 SA nð Þ→∧ki¼1SA nið Þ BA5

PS ∨ki¼1SA nið Þ→PS nð Þ RA6 PS nð Þ→∨ki¼1SA nið Þ BA6

PD ∨ki¼1DE nið Þ→PD nð Þ RA7 PD nð Þ→∨ki¼1DE nið Þ BA7

DE ∧ki¼1DE nið Þ→DE nð Þ RA8 DE nð Þ→∧ki¼1DE nið Þ BA8

Rctr SA r ↦ {+}SA(ni) → SA(n) RA9 ri ↦ {+} SA(n) → SA(ni) BA9

r ↦ {−}SA(ni) → DE(n) RA10 ri ↦ {−} SA(n) → DE(ni) BA10

PS / ri ↦ {−} PS(n) → DE(ni) BA11

PD / ri ↦ {+} PD(n) → DE(ni) BA12

DE
r↦ þf g DE nið Þ→DE nð Þð Þ∨

DE nið Þ→PD nð Þð Þ
RA11 ri ↦ {+} DE(n) → DE(ni) BA13

r↦ −f g DE nið Þ→SA nð Þð Þ∨
DE nið Þ→PS nð Þð Þ

RA12 ri ↦ {−} DE(n) → SA(ni) BA14

ZHANG ET AL. 7 of 28
When a SAT reasoning fails to find a satisfying assignment, it is useful to know about the underlying conflict (s).31 ϕConflict is a representation

of conflicts that we want to avoid. Formula (5) states that conflicts are not allowed; (6) states that n cannot be satisfied and partially denied and

vice versa; (7) states that n can only be partially satisfied and partially denied. These three conflicts are called strong conflict, medium conflict, and

weak conflict, respectively.

ϕConflict::¼∧n∈N ¬ PS nð Þ ∧ PD nð Þð Þð Þ (5)

ϕConflict::¼∧n∈N ¬ SA nð Þ∧PD nð Þð Þ∧¬ PS nð Þ∧DE nð Þð Þð Þ (6)

ϕConflict::¼∧n∈N ¬ SA nð Þ ∧DE nð Þð Þð Þ (7)

The most popular SAT algorithm is Davis Putnam Logemann Loveland, and zChaff33 is probably the most efficient Davis Putnam Logemann

Loveland implementation available.32 Using zChaff, a pseudo code implementing the backward reasoning is described in Algorithm 1.

Algorithm 1 SAT.

INPUT: trm = (N, R).

OUTPUT: Initial_Status(ni), SAT_Status(ni), Conflict(ni).

BEGIN

kTG = ∣ TG ∣ ; kTA = ∣ TA ∣ ; kSG = ∣ SG ∣ ;

ϕModel≔ ; ϕInitial≔ ; ϕConstraint≔ ; ϕConflict≔ ; /*The proposition represents the trivially true statement*/

FOR i:=1 TO kTG + kTA + kSG DO

BEGIN

Ask user to set Initial_Status(ni) for each node ni;

ϕInitial ≔ ϕInitial ∧ Initial_Status(ni)

END

ϕModel ≔ MakeSAT(trm);

/*Create ϕModel from a TRM trm*/

Ask user to input ϕConstraint and ϕConflict;

ϕ ≔ ϕModel ∧ ϕInitial ∧ ϕConstraint ∧ ϕConflict;

Call prop2cnf.py to convert ϕ to CNF;

Call zChaff to calculate the satisfaction of CNF;

WHILE RESULT=UNSAT DO

BEGIN

8 of 28 ZHANG ET AL.
Output conflict clause;

Record SAT_Status(ni);

Ask user to decide whether the conflict is acceptable;

IF the conflict is allowed THEN

Modify ϕConflict in ϕ

ELSE

Modify ϕInitial or delete clause of conflict nodes ni in ϕ

ϕ ≔ ϕModel ∧ ϕInitial ∧ ϕConstraint ∧ ϕConflict;

Call prop2cnf.py to convert ϕ to CNF;

Call zChaff to calculate the satisfaction of CNF

END;

List Initial_Status(ni), SAT_Status(ni), Conflict(ni) for all nodes

END

MakeSAT (trm) in Algorithm 1 converts a TRM trm to ϕModel. After the user inputs ϕInitial, ϕConstraint, and ϕConflict, ϕ is generated by ϕModel-

ϕInitial ∧ ϕConstraint ∧ ϕConflict. Then, a python code prop2cnf.py34 converts ϕ to CNF form. By following the backward propagation axioms in

Table 3, a modified zChaff is called to find a satisfying solution for CNF. We modified the zChaff to output the conflict clauses that the original

zChaff does not output. If Algorithm 1 terminates and displays “UNSAT,” a conflict clause is output, and the corresponding SAT_Status(ni) of con-

flict node ni is saved. If the conflict is acceptable, the user is asked to modify ϕConflict. Otherwise, the user is asked to modify ϕInitial or delete the

conflicting node. The algorithm continues to execute until the result is “SAT,” which indicates that a satisfying solution has been found. In the fol-

lowing section, the TG_activities in this satisfied solution are integrated into the base processes.
3 | TRUSTWORTHINESS REQUIREMENT‐ORIENTED SOFTWARE PROCESS MODELING

Li designed a software evolution process meta‐model (EPMM)30 as a formal tool used to define software evolution processes. EPMM not only

formally defines the structures and behaviors of all components, eg, tasks, activities, and software processes, but also embodies the important

properties of software evolution process, eg, iteration, concurrency, interleaving, feedback‐driven, and multi‐level, are embodied. Therefore,

EPMM can be used to model software processes and software evolution processes at different abstract levels. According to the decomposition

granularity of software processes, a four‐level framework is designed in EPMM. The highest abstract level is a global level that includes all soft-

ware processes. The third through first levels are the software process level, activity level, and task level, respectively.

Based on the definition of theTRMM, EPMM is used to model base processes for hard goals. For specific trustworthiness goals, TG_activities

must be inserted into the base processes. Therefore, using aspect‐oriented modeling to extend the EPMM framework, a TROSP modeling frame-

work is proposed.
3.1 | TROSP modeling framework

Figure 3 depicts the TROSP modeling framework.

At the activity level, TG_activities are added. Based on the definition of TG_activity in Definition 3, an activity body is either a software process or a

set of tasks.When aTG_activity is a software process, it is defined as aTG_process aspect. Similarly, when aTG_activity is decomposed into a set of tasks,

each task is defined as aTG_task aspect. After weaving these aspects into the base processes, trustworthiness processes are added to the global level.

At the process level, a number of formal components of TG_process aspects are defined. These components are the pointcut, advice, aspect,

and weaving mechanism. A pointcut is a well‐defined position in the base program where additional behavior can be attached.35 In the modeling

domain, a pointcut represents a well‐defined element in the base model where an advice can be introduced. In the following definition, a pointcut

in a base process is an element of a Petri net.
Definition 5. (Pointcut). Given a base process p = (C,A; F ,M0), a pointcut pc is a condition pc ∈ C, or an activity pc ∈ A, or a flow

relation pc ∈ F of p, pc ∈ PC, PC ↦ {C,A, F }.
An advice specifies how to augment or constrain base processes. Each advice is defined with a set of pointcuts that determine the positions of

attachment of the advice. Petri nets are used to define the functions of the advices.
Definition 6. (Advice). An advice is a 5‐tuple ad = (C,A; F , Ae,Ax), where (1) (C,A; F) is a Petri net in which C is a set of conditions,

A is a set of activities, A ∪ C ≠ ∅, and F is a set of flow relations, F ⊆ (C × A) ∪ (A × C); (2) Ae, Ax ⊆ A are the entrance activity set

and the exit activity set of the advice, respectively.
The difference between a base process and an advice is that an advice is a Petri net with no marking, which means the activities in an advice

are not enabled. The activities are enabled only when they are woven into the base processes.

FIGURE 3 TROSP modeling framework

ZHANG ET AL. 9 of 28
A TG_process aspect is an encapsulated entity of an advice and its pointcuts with weaving types. For the sake of simplicity, the term

TG_process aspect is sometimes denoted by aspect in the following.
Definition 7. (TG_Process Aspect). A TG_process aspect is defined by a 2‐tuple tpa = (ad,W), where (1) ad is an advice that aug-

ments or constraints a base process p; (2) W is a set of tuples, and ∀w ∈ W is a 2‐tuple w = (pc,wt) in which pc is a pointcut that

represents a weaving position in the base process p, ∀pc ∈ PC; wt is a weaving type for the advice ad; before, after, around, iteration,

and concurrency are five weaving types, and each is described as 1, 2, 3, 4, and 5, respectively.
Similar to theTG_process aspect, aTG_task aspect is an encapsulated entity of aTG_task advice and its TG_task pointcuts with weaving types.

The TG_task advice in a TG_task aspect is a 2‐assertion that defines the function of the TG_task. The precondition of the 2‐assertion defines the

state before the TG_task is executed, while the postcondition defines the state after the TG_task is executed. The TG_task advices in the TG_task

aspects are also enabled only when they are woven into the base tasks.

The weavings of aspects are specified by a weaving mechanism. Two types of weaving are defined in the weaving mechanism: asymmetric

weaving and symmetric weaving. Asymmetric weaving weaves aspects into base processes, whereas symmetric weaving weaves multiple aspects

together when these aspects have joint pointcuts with the same weaving types.36 For intuitive analysis, in the following, asymmetric weaving is

called base‐aspect weaving, and symmetric weaving is called aspect‐aspect weaving.

Given a base process p and a set of TG_process aspectsTPA = {tpa1, tpa2,⋯, tpaj}(j > 0), the weaving begins by creating a weaving plan to store

the pointcuts for all these aspects, such as the examples shown in Table 4. In this plan, aspects tpa1 and tpa2 have the joint pointcut pc2 and the

same weaving type 1 (before type in Definition 7). Aspects tpa2 and tpaj have the joint pointcut pci with a different weaving type. At pointcut pc1,

only tpa1 will be woven with weaving type 5 (concurrency type in Definition 7).

When several aspects are woven at joint pointcuts with the same weaving types, such as tpa1 and tpa2 at pc2, the interdependencies among

these aspects are analyzed first. The aspects are then woven together based on the interdependence relations. If there is no interdependence

among these aspects, they can be woven in concurrent relations for higher efficiency. Aspects that have joint pointcuts but different weaving

TABLE 4 A weaving plan example

Aspects

Pointcuts

pc1 pc2 . . . pci

tpa1 5 1

tpa2 1 2

. . .

tpaj 3

10 of 28 ZHANG ET AL.
types, such as tpa2 and tpaj at pci, or that do not have joint pointcuts with the other aspects, such as tpa1 at pc1, are woven into the base processes

separately. After all TG_process aspects are woven into the base processes, the woven trustworthiness processes are generated and added to the

global model at the global level (see Figure 3).
Definition 8. (Global Model). A global model is a 3‐tuple g = (P, TP, E), where (1) P is a set of base processes; (2) TP is a set of trust-

worthiness processes; and (3) E ⊆ (P × P) ∪ (TP × TP) ∪ (TP × P) is a binary relation and a partial order, called the embedded relation

of P and TP. E = {(x, x′)| x, x′ ∈ TP ∪ P ∧ x′ is embedded in x}, and x' is called a subprocess of x.
The aspect‐oriented paradigm provides a proper mechanism to weave the TG_process aspects into the base processes. However, changing

the base processes via aspect‐oriented modeling may introduce mistakes or errors. As mentioned previously, process trustworthiness is the degree

of confidence that the software process will produce the expected trustworthy work products. A process that has errors is not trustworthy. To

ensure the correctness of the changes to the base processes, a correctness weaving method for aspect‐oriented trustworthiness process modeling

is proposed.
3.2 | TROSP modeling correctness

Based on the weaving mechanism, two types of correctness are analyzed: aspect‐aspect correctness and base‐aspect correctness.

3.2.1 | Aspect‐aspect correctness

Jointly deployed aspects may interact with each other. If not treated properly, an interaction can give rise to interferences. Aspect‐aspect inter-

ferences are caused by the interdependencies among aspects. Li30 used Bernstein's sufficient condition for the independence of two programs to

define activity dependences. He defined data dependence and control dependence for activities in software processes. Data dependence specifies

that the execution of an activity should precede the execution of another activity. Control dependence expresses conditional execution depen-

dencies between activities; that is, it specifies that an activity is conditionally executed depending on the execution result of another activity.

Based on these two types of dependences, aspect‐aspect correctness is defined.
Definition 9. (Aspect‐Aspect Correctness). Let tpai and tpaj be any two aspects; the correctness of aspect‐aspect weaving is

defined as follows: (1) tpai and tpaj are woven in order of data dependence iff O(tpai) ∩ I(tpaj) ≠ ∅ or O(tpaj) ∩ I(tpai) ≠ ∅ (O(tpa)

and I(tpa) are the set of output artifacts and input artifacts of tpa as defined in Definition 3); (2) tpai and tpaj are woven according

to the control dependence iff whether tpaj can be executed is determined by the execution result of tpai.
To analyze and describe the dependence relations intuitively, a dependence graph30 is constructed. For example, assume that reliability and

accuracy are two trustworthiness goals. TheTG_activities for reliability include reliability identification, reliability modeling, and fault tolerance design.

A TG_activity for accuracy is accuracy boundary identification. Assume that reliability identification and reliability modeling are encapsulated in the

TG_process aspects tpai and tpaj. They are woven into a joint pointcut with the same weaving type. Since the outputs of reliability identification

will be inputted into reliability modeling, their dependence relation is data dependence. Figure 4A,B depicts the data dependence graph and Petri

net transformed from the dependence graph. Because the exit activity set Ax of tpai and the entrance activity set Ae of tpaj are both single activity

sets, the transformed Petri net can be simplified, as shown in Figure 4C. Similarly, assume that there is control dependence between accuracy

boundary identification and fault tolerance design. Figure 4D,E,F depicts their control dependence graph, transformed Petri net, and simplified Petri

net. The execution of fault tolerance design is determined by the execution result of accuracy boundary identification. When the result of accuracy

boundary identification shows that the failure of any part of software is not acceptable, fault tolerance design will not be executed and the token will

be moved to av. av in Figure 4F represents a virtual activity that does nothing but transfers tokens.

For tpai and tpaj, adi and adj are executed sequentially because of their data dependence relation. Assume that the woven aspect is tpa = (ad,

W), where ad = (C,A; F , Ae,Ax) and W = {(pc,wt)}. Formally, C = adi. C ∪ adj. C, A = adi. A ∪ adj. C ∪ {av}, F = adi. F ∪ adj. F ∪ {(cs, v)| cs ∈ ad1.

Ax
•} ∪ {(v, ct)| ct ∈ ad2.

•Ae}, Ae = adi. Ae, Ax = adj. Ax, pc = pci ∩ pcj, wt = wti. Ax
•and •Ae denote the output set of Ax and the input set of Ae, respec-

tively (let p = (C,A; F ,M0) be a software process and x ∈ C ∪ A, then •x = {y| y ∈ C ∪ A ∧ (y, x) ∈ F } and x• = {y| y ∈ C ∪ A ∧ (x, y) ∈ F }. For tpa f and

tpal, the execution of adl of tpal is determined by ad f of tpa f because of their control dependence relation.

The weaving between TG_task aspects is similar and omitted for the sake of simplicity.

FIGURE 4 Examples of dependence graphs and transformed petri nets: A, data dependence graph B, transformed petri net C, simplify
transformed petri net D, control dependence graph E, transformed petri net F, simplify transformed petri net

ZHANG ET AL. 11 of 28
3.2.2 | Base‐aspect correctness

The base‐aspect weaving weaves aspects into the base processes. According to the properties of Petri nets, when an aspect is woven into

a base process, the errors or mistakes that may occur can be defined as the structural or dynamic property problems of Petri nets. When

an aspect is woven into a base process, if structural property problems arise, there must be static structural flaws existing in the woven

model. Referring to the structural properties of Petri nets, the correct structural properties of an aspect‐oriented trustworthiness process

are no side condition, no isolated node, no deadlock, and no trap. When an aspect‐oriented trustworthiness process is executed, its

dynamic properties should be discussed. The dynamic properties are relevant to the marking of the process model (the marking is defined

in Definition 1). Similarly, referring to the dynamic properties of Petri nets, the correct dynamic properties are safe, contact‐free, persistent,

and liveness.

When an aspect is woven into a base process, errors or mistakes only affect the activities around the pointcuts. For example, an aspect

tpa = (({ctpa1, ctpa2}, {atpa1}; {(ctpa1, atpa1), (atpa1, ctpa2)}), (p. ap2, 3)) is woven into a base process p = ({cp1, cp2, cp3}, {ap1, ap2}; {(cp1, ap1), (ap1, cp2), (cp2,

ap2), (ap2, cp3)}, {cp1}). The affected activities are atpa1 andap2. Only these affected activities and the connected conditions should be analyzed.

We define them in a weaving region. A weaving region is a Petri net that is part of a woven trustworthiness process. In Figure 5, wr = ({cp2,

cp3}, {atpa1, ap2}; {(cp2, ap2), (ap2, cp3), (cp2, atpa1), (atpa1, cp3)}) is the weaving region that is encased in a dashed rectangle.
Definition 10. (Weaving Region) Let tpa = (ad,W) be aTG_process aspect and p = (C, A; F ,M0) be a base process. Suppose that tpa

is woven into p at pointcut pc ∈ PC; a weaving region is wr = (C′,A′; F ′), where, C′ = {c| c ∈ •A′ ∪ A′• ∧ c ∈ p. C ∪ ad. C}, A′ = {a|

a ∈ •PC ∪ PC• ∪ PC ∪ dom (PC) ∪ cod(PC) ∧ a ∈ p. A ∪ ad. A} ∪ ad. Ae ∪ ad. Ax, F
′ = { f | f ∈ (C′ × A′) ∪ (A′ × C′)}.
Assume that all base processes and aspects have been proved to be satisfied with respect to structural and dynamic properties. The

correctness analysis is only focused on the weaving region. In the following, structural correctness and dynamic correctness are defined.

Structural correctness is determined by the topology structure properties of Petri nets. Dynamic correctness is relevant to the initial marking

of Petri nets.
Definition 11. (Structural Correctness) Given a TG_process aspect tpa = (ad,W) and a base process p = (C,A; F ,M0), when tpa is

woven into p, the structural correctness of the weaving region wr is defined as follows: (1) if ∀a ∈ wr. A, then •a ∩ a• = ∅; (2) if

∀y ∈ wr. C ∪ wr. A, then •y ∪ y• ≠ ∅; (3) if C1 ⊆ wr. C, there is no •C1 ⊆ C1
• or C1

• ⊆ •C1.

FIGURE 5 An example of a weaving region

12 of 28 ZHANG ET AL.
In Definition 11, the first structural correctness indicates that an activity in the weaving region does not have side condition. If an activ-

ity has a side condition, it will never fire. The second structural correctness shows that isolated nodes are not allowed. The third structural

correctness implies that the conditions in the weaving region do not have deadlock conditions (•C1 ⊆ C1
•) or trap conditions (C1

• ⊆ •C1). A

deadlock condition without a token will never be able to obtain a token. A trap condition with a token will never be able to send out the

token.
Definition 12. (Dynamic Correctness) Given a base process p = (C, A; F ,M0) and a TG_process aspect tpa = (ad,W), when tpa is

woven into p, the dynamic correctness of the weaving region wr is defined as follows: (1) if ∀a ∈ ad. A and ∃M ∈ ∑ (p. M0),

then M[a>, where ∑(p. M0) is a set that includes markings reachable from the initial marking M0; (2) if ∀a ∈ wr. A ∩ p. A, ∃σ ∈ ad.

A*, and ∃M ∈ ∑ (p. M0), M[a > ∨ ((¬ M[a > ∧ M[σ > M′) → M′[a >), where σ is an activity subset of the powerset of activities

in ad; (3) if ∀c ∈ wr. C and ∀M ∈ ∑ (p. M0), then M(c) ≤ 1; (4) if ∀a ∈ wr. A ∀M ∈ ∑ (p. M0), ∃c ∈ •a, and M(c) = 1, there is no ∃c
′ ∈ a• andM(c′) = 1.
In this definition, the first dynamic correctness implies that there exists a reachable marking M and an activity in the aspects can be

enabled at M. The second dynamic correctness shows that each activity in the base process is also enabled. Because the software pro-

cesses in this paper are defined in the elementary Petri net, conditions that are not safe or contact are not allowed. Thus, the third

dynamic correctness indicates that all conditions in the weaving region are safe. The fourth dynamic correctness shows that all conditions

in the weaving region are contact‐free. The safe and contact‐free conditions ensure that the activities after these conditions can be

enabled.

When an aspect is woven into a base process, there are 10 types of base‐aspect weaving operations: before condition weaving, after condition

weaving, around condition weaving, iteration weaving, concurrency weaving, before activity weaving, after activity weaving, around activity weaving,

condition‐activity flow weaving, and activity‐condition flow weaving. Based on the correctness Definitions 11 and 12, all of these weaving operations

are analyzed, and four of them do not satisfy the correctness definitions. Here, we assume that an aspect tpa = (ad,W) is woven into a base pro-

cess p = (C,A; F ,M0).

Before activity weaving weaves the aspect tpa before an activity pointcut a of base process p, and the weaving type is before weaving

(w = (p. a, 1)), as shown in Figure 6A. The original intention of this weaving is to add a restriction to the activity a in the base process p that

the execution of a must wait for the execution of the aspect tpa. Therefore, a new input condition c is added to the activity a. However, when

the activity a executes repeatedly in an iterative structure, this weaving will forbid its iterative execution because there will be no token in the

new input condition c after the activity a executes. This violates the second dynamic correctness in Definition 12. Therefore, we replace before

activity weaving with condition‐activity flow weaving because they have the same effect on weaving. Figure 6B and Algorithm 2 depict and

describe condition‐activity flow weaving, respectively.

Algorithm 2 Flow_Weaving.

INPUT: p = (C, A; F , M0), tpa = (ad, W).

OUTPUT: tp = (C′, A′; F ′, M0
′).

BEGIN

C′ ≔ ∅; A′ ≔ ∅; F ′ ≔ ∅; M0
′ ≔ ∅;

FOR each w in W DO

IF dom(w. pc) ∈ p. C THEN /*condition-activity flow weaving*/

BEGIN

C′ ≔ p. C ∪ ad. C − ad. •Ae;

IF ∣Ae ∣ > 1 THEN

BEGIN

A′ ≔ p. A ∪ ad. A ∪ {av};

F ′ ≔ p. F ∪ ad. F − w. pc ∪ {(av, ci)| ci ∈ ad. •Ae} ∪ {(dom(w. pc), av)} ∪ {(cj, cod(w. pc)| cj ∈ ad. Ax
•)}

/*av represents a virtual activity that does nothing but transfers tokens.*/

FIGURE 6 Before activity weaving is replaced by condition‐activity flow weaving: A, before activity weaving; B, condition‐activity flow

ZHANG ET AL. 13 of 28
END

ELSE

BEGIN

A′ ≔ p. A ∪ ad. A;

F ′ ≔ p. F ∪ ad. F − w. pc − inflow(ad. Ae) ∪ {(dom(w. pc), ai)| ai ∈ ad. Ae} ∪ {(cj, cod(w. pc))| cj ∈ ad. Ax
•}

END;

M0
′ ≔ p. M0

END

END

When using Algorithm 2 in a condition‐activity flow weaving, Figure 6B shows the result of weaving an aspect tpa into a base process p. The

pointcut of tpa is a flow relation w. pc = (c3, a1). Following the procedure of Algorithm 2, since Ae = {a2}, we can get ad. •Ae = c1 and C′ = {c2, c3, c4}.

Similarly, because ∣Ae ∣ = 1, we can get A′ = {a1, a2} and F ′ = {(a1, c4), (a2, c2), (c3, a2), (c2, a1)}, where dom(w. pc) = c3, cod(w. pc) = a1 (dom() and cod()

are defined in Definition 2), and inflow(ad. Ae) = {(c, a)| (c, a) ∈ ad. F , c ∈ ad. C ∧ a ∈ ad. Ae} = {(c1, a2)}. C′, A′, and F ′ are the conditions set, activities

set, and flow relations set of the output trustworthiness process tp.

After activity weaving is similar to before activity weaving but has the opposite weaving type. As shown in Figure 7A,w = (p. a, 2), the pointcut is

activity a in base process p, and the weaving type is after weaving. This weaving may cause a contact problem (the fourth dynamic correctness in

Definition 12) when a is in an iterative structure. Therefore, it is replaced by the activity‐condition flow weaving (see Figure 7B).

Before condition weaving weaves an aspect tpa before a condition pointcut c of base process p, and the weaving type is before weaving

(w = (p. c, 1)). As shown in Figure 8A, the result of this weaving is to add the advice ad before the condition c. Nevertheless, based on

Definition 12, this weaving may cause a safety problem (the third dynamic correctness in Definition 12) in c or make the activities in the

aspect unable to fire (the first dynamic correctness in Definition 12). After condition weaving is similar to before condition weaving but has

the opposite weaving type, as shown in Figure 8B. This weaving may cause the persistent problem (the second dynamic correctness in

Definition 12) in the base process. These two weavings cannot be replaced because the relations between activities in the aspect and base

process are not specified.

Similarly, the other six weaving operations are analyzed and proved to be correct. These operations are condition‐activity flow weaving,

activity‐condition flow weaving, around condition weaving, around activity weaving, iteration weaving, and concurrency weaving. Therefore, these six

weavings are used to weave aspects into base processes.

When weaving TG_task aspects into base tasks, because no message is transferred, there is no correctness problem.
3.3 | TROSP modeling workflow and aided tool

The approach to modeling TROSP is linked to the TRMM (see Section 2) and the TROSP modeling framework (see Section 3.1). The steps of

the proposed modeling approach are depicted in Figure 9. The first step is the negotiation among the multiple stakeholders to reconcile their

trustworthiness goals and soft goals. The main method is the Delphi method,21 which is a structured communication technique based on the

results of questionnaires sent to a panel of experts. The second and third steps model the TRM and find satisfied TG_activities by backward

reasoning.

FIGURE 7 After activity weaving is replaced by activity‐condition flow weaving: A, after activity weaving; B, activity‐condition flow weaving.

FIGURE 8 Before condition weaving and after condition weaving: A, before condition weaving; B, after condition weaving

14 of 28 ZHANG ET AL.
For each TG_activity, the input artifacts set I, local artifacts set L, output artifacts set O, and analyzing activity body B are defined. If B is a

software process, a corresponding TG_process aspect is defined. Otherwise, B is decomposed into a set of tasks, and a set of corresponding

TG_task aspects are defined. Then, abiding by the definitions of Aspect‐Aspect Correctness (see Definition 9), Structural Correctness (see Defini-

tion 11), and Dynamic Correctness (see Definition 12), these aspects are woven at the process level and the task level. After all aspects are woven,

the global model is generated. Algorithm 3 describes the modeling at the process level and the global level. The output TP and g are a set of trust-

worthiness processes and a global model, which are defined in Definition 8.
Algorithm 3 Process‐Global_Modeling.

INPUT: P = {pi}0 < i < m, TPA = {tpaj}0 < j < k.

OUTPUT: TP, g.

BEGIN

TP ≔ ∅;

FOR ∃p ∈ P AND ∃tpa. w. pc ∈ p. C ∪ p. A ∪ p. F DO

BEGIN

PC ≔ tpa1. w. pc ∪ tpa2. w. pc ∪ ⋯tpak. w. pc;

FOR ∀pc ∈ PC DO

BEGIN

SJPpc ≔ ∅;

FOR j = 1 to k DO

IF pc ∈ tpaj. w. pc THEN

SJPpc ≔ SJPpc ∪ {tpaj}

END;

FOR ∀pc ∈ PC DO

BEGIN

FOR ∣SJPpc ∣ > 1 and tpa with same wt DO /*Aspect-Aspect_Weaving*/

BEGIN

tpa ≔ Aspect − Aspect_Weaving();

SJPpc ≔ SJPpc ∪ {tpa}

FIGURE 9 TROSP modeling workflow

ZHANG ET AL. 15 of 28
END;

FOR ∣SJPpc ∣ = 1 or tpa with different wt DO /*Base-Aspect_Weaving*/

IF tpa. w. pc ∈ p. A THEN

tp:= Activity_Weaving (p, tpa);

ELSE IF tpa. w. pc ∈ p. C THEN

tp:= Condition_Weaving (p, tpa);

ELSE IF tpa. w. pc ∈ p. F THEN

tp:= Flow_Weaving (p, tpa);

END;

TP ≔ TP ∪ {tp};

Replace p with tp in E;

P ≔ P − {p}

END

END.
In Algorithm 3, SJP is a set of aspects. The aspects in SJP have joint pointcuts. For a specific pointcut pc, the aspects in SJPpc have the

joint pointcut pc. When several aspects are woven at joint pointcuts, interdependencies among these aspects should be analyzed and the

aspects with the same weaving types are woven together first. Then, these aspects are woven into the base processes. When a base process

p is woven with all the aspects, it becomes a woven trustworthiness process tp, and p in E is replaced by tp. E is a set of embedded relations

of base processes set P and trustworthiness processes set TP in Definition 8. The proofs of the correct modeling in Algorithm 3 will be pre-

sented in Sections 5.1.2 and 5.1.3 below.

With the aim of TROSP modeling, the Trustworthiness Process Aided Tool (TPAT) modeling tool is designed and developed in the open‐

source software PIPE37 with a plug‐in technique. TPAT consists of two core components: the base processes modeling component PIPE and

the aspect‐oriented extension component, as illustrated in Figure 10. The aspect‐oriented extension component is constrained by the definitions

of the base processes and the aspects and consists of two weaving components: aspect‐aspect weaving and base‐aspect weaving. All definitions

and weaving data are written in a configuration file.

To model a TROSP, TPAT functions as follows.

(1) The base processes and the advices of the aspects are first created in PIPE.

F

16 of 28 ZHANG ET AL.
(2) According to the definitions of the base processes and the aspects, a weaving plan is created and stored in a configuration file. This weaving

plan is created for the initialization of the aspect‐oriented extension, as introduced in the weaving mechanism in Section 3.1. The aspects

weavings are enforced by clicking the plug‐in TPAT in PIPE.

(3) Aspect‐aspect correctness is followed to weave together the aspects that are woven at the joint pointcuts with the same weaving types.

The remaining aspects are woven into the base processes at each of the pointcuts according to the six base‐aspect weaving operations.

The correctness of the weaving is examined for the whole weaving procedure. Any correctness problem will terminate the weaving pro-

cedure, and messages that state the error positions will pop up. Once all errors are removed, the procedure will continue until the

TROSPs are generated.
4 | CASE STUDY

The proposed method was applied to a systematic study of security infrastructure system (SIS) software. SIS is a trustworthy third‐party certifi-

cation authority software system. It provides identity authentication services and secure connections over the Internet. SIS certification authority

(SISCA) and SIS user agent (SISUA) are two subsystems of SIS. SISCA is a server system that manages users, keys, certificates, and cross autho-

rization. SISUA is a client system that helps users encrypt, decrypt, sign, and verify. SIS is used to issue and manage digital certificates for identity

authentication. The certificate owners are verified by the signature in the digital certificates. Keys are used for secure data transfer. Over the

years, new evolution requirements for running SIS software have been proposed continually.

With the aim of evolution of the SIS software, a project team was formed involving the corresponding stakeholders. The team comprised a

software engineering technical manager, a superintendent of the SIS, an expert in Public Key Infrastructure, a deputy of the certificate owner,

a software developer and a maintenance team.
4.1 | Trustworthiness goal‐oriented modeling and reasoning

The original functional requirements and NFRs were summarized from the software requirement specifications and provided to the

project team. Through the negotiation in the Delphi procedure, new TRs were acquired. Table 5 lists the trustworthiness goals and the soft

goals.

To satisfy the trustworthiness goals, TG_activities were chosen to model the TRM, as shown in Figure 11.

The corresponding Boolean formula ϕ is the following:

ϕ ::¼ ϕInitial ∧ ϕModel ∧ ϕConstraint ∧ ϕConflict

In ϕ, the Boolean formula of the initial values ϕInitial that are assigned to the trustworthiness goals and the soft goals is the

following:
IGURE 10 TPAT component design

ZHANG ET AL. 17 of 28
The Boolean formula of the TRM ϕModel is the following:

The Boolean formula of the constraints ϕConstraint is the following:

ϕConstraint ::¼ SA ta425ð Þ∨SA ta427ð Þð Þ∧ SA ta426ð Þ∨SA ta427ð Þð Þ

The Boolean formula of the conflict ϕConflict that should be avoided is strong conflict:

ϕConflict ::¼ ¬
�
SAðnÞ ∧ DEðnÞ

�
; n is the node in m

By using backward reasoning in the modified zChaff, the result for the first reasoning was “UNSAT,” and the conflict was at the 28th clause

SA(ta42) → SA(ta427), as shown in Figure 12A. Fault Tolerance Design (ta427) conflicts with the initial satisfaction values of TG1 and TG2 in ϕInitial, as

shown in the Boolean formula of the TRM ϕModel and the Boolean formula of the initial values ϕInitial. After saving SAT_Status(ta427), we deleted

this conflicting node ta427 in ϕ to continue the reasoning. Then, the results showed that the conflicts were on the other three nodes, ta435, ta21,

and ta211. These nodes are Redundancy Design activity, Define Minimum Security Criteria activity, and Define Minimum Cryptographic Design. After

similar saving and deleting, the final result was “SAT,” as shown in Figure 12B.

Table 6 lists the resulting statuses and conflicts for all TG_activities. After discussion within the project team, Fault Tolerance Design was

removed and compensated by Fault Prevention Design and Error Correction Design. The other four conflicting TG_activities were analyzed during

prototyping to make appropriate design decisions. Additionally, when the four conflicting TG_activities were woven into the base processes

and base tasks, interdependences and weaving correctness were used to control their conflicts. The final modeling of these TG_activities at the

activity level, including decomposition and defining aspects, is listed in the rightmost column of Table 6.

4.2 | Trustworthiness requirement‐oriented software process modeling

After the preceding reasoning, 44 TG_activities were defined at the activity level. Through thoughtful analysis and team discussions, 18

TG_activities were decomposed into TG_processes, and the other 26 TG_activities were decomposed into a set of TG_tasks. The decomposition

was based on the purpose of each TG_activity and the base processes that the TG_activity should be integrated in. Code Review and

Redundancy Design are the two TG_activities that we describe in the following as two examples of the 44 TG_activities. Code Review was

decomposed into a TG_process. Redundancy Design was decomposed into a set of TG_tasks: Recovery Design, N Redundancy Design, and Defense

Design.

TG_activity Code Review = (I, O, L, B).

I = {Evolution requests, Code};

O = {Review Report};
TABLE 5 Trustworthiness goals and soft goals for SIS software

Trustworthiness Goals Soft Goals

TG1 functional suitability TG4 reliability SG1 performance

TG11 functional completeness TG41 availability SG2 usability

TG12 functional correctness TG42 fault‐tolerance

TG2 security TG43 recoverability

TG21 confidentiality TG5 compatibility

TG3 maintainability

FIGURE 11 TRM for SIS

18 of 28 ZHANG ET AL.
L = {Code Review Tools};

B = {Code Review};

TG_activity Redundancy Design = ((I, O, L, B).

I = {Requirements, Reliability Model};

O = {Design Redundancy};

L = {Design};

B = {Recovery Design, N Redundancy Design, Defense Design};

By making use of Li's approach30 at the process level, a series of software processes were generated, and their definitions were checked

before weaving aspects into them. For the sake of simplicity, the SIS process is provided as one example process in this paper. The Design Evolution

activity in the SIS process was decomposed into another example process, the Design Evolution process. In Figures 13 and 14, Petri nets outside

the dotted boxes are these two base processes, respectively.

To integrate the TG_activities into the SIS process and Design Evolution process, the decomposed TG_processes and TG_tasks were encap-

sulated in aspects. Code Review is an example that is encapsulated in the TG_process aspect CR.

TG_process aspect_CR = (ad, W)

ad = (C, A, F , Ae, Ax);

C = {c1
′, c2

′};

A = {Code Review};

F = {(c1
′, Code Review), (Code Review, c2

′)};

Ae = {Code Review};

Ax = {Code Review};

W = {w}, w = (pc, wt);

pc = {(Evolution Test, c5)};

wt = 2; /*activity‐condition flow weaving*/.

Since the weaving of the TG_process aspects changes the base processes, which may introduce mistakes or errors, the correctness of their

weavings was checked. First, the interdependencies among the aspects were analyzed, and the aspects with joint pointcuts and the same weaving

types were woven together based on their data dependences and control dependences. Then, the woven aspects and all other aspects were

woven into the base processes. During the base‐aspect weaving procedure, the correctness problems of side condition, isolated node, deadlock,

trap, safety, contact‐free, and liveness were checked. When correctness problems were found, warning messages popped up in TPAT, and the

weaving procedure was terminated until the problems were solved. The final weaving results are illustrated in Figures 13 and 14. Petri nets in

the dotted boxes are the TG_process aspects.

FIGURE 12 Trustworthiness goal‐oriented
reasoning for SIS: A, first reasoning result; B,
final reasoning result

TABLE 6 Modeling at the activity level

TG_Activity Status Conflict Pointcut and Weaving Type

Functionality analysis SA (c1, Techniques Selection), before

Requirements V&V SA (Proposal for changes, c9), after

Design V&V SA Validation, around

Data type checking SA Task of Evolution Test

Code review SA (Evolution Test, c5), after

Interface design PS/DE Medium conflict Task of Re‐Design

Collaboration analysis SA (c1, Techniques Selection), before

Compatibility test SA Task of Evolution Test

Redundancy design SA/DE Maintainability, security, performance Task of Re‐Design

Incident response planning SA (Integration, c8), after

Stress test SA Task of Evolution Test

Resource deployment based on functional profile SA (c3, Evolution Division), before

Reliability requirements analysis SA (c1, Techniques Selection), before

Define failure SA (Risk Analysis, c10), after

(Continues)

ZHANG ET AL. 19 of 28

TABLE 6 (Continued)

TG_Activity Status Conflict Pointcut and Weaving Type

Reliability modeling and analysis SA (Proposal for changes, c9), after

Reliability modeling SA Task of Reliability Modeling and Analysis

Reliability forecasting SA Task of Reliability Modeling and Analysis

Reliability planning SA Task of Reliability Modeling and Analysis

Create reliability distribution SA Task of Reliability Modeling and Analysis

Reliability test SA Task of Evolution Test

Failure test SA Task of Evolution Test

Reliability growth test SA Task of Evolution Test

Regression test SA Task of Evolution Test

Fault prevention design SA Task of Re‐Design

Error correction design SA Task of Re‐Design

Fault tolerance design SA/DE Functional suitability, security

Define minimum security criteria SA/DE Maintainability, performance, usability (c1, Techniques Selection), before

Security risk assessment SA Task of Risk Analysis

Security asset and boundary identification SA (c1, Techniques Selection), before

Threat modeling SA (Proposal for changes, c9), after

Misuse cases modeling SA (Proposal for changes, c9), after

Attack surface analysis SA Task of Risk Analysis

Security test SA Task of Evolution Test

Dynamic analysis SA Task of Evolution Test

Fuzz test SA Task of Evolution Test

Statistic analysis SA Task of Evolution Test

Attack surface review SA (Evolution Test, c5), after

Security techniques assessment SA Task of Techniques Selection

Deprecate unsafe functions SA (Evolution Test, c5), after

Security design review SA Task of Design Review

Define minimum cryptographic design SA/DE Performance, usability (c1, Techniques Selection), before

Maintenance design SA Task of Re‐Design

Cohesion design SA Task of Re‐Design

Abstraction design SA Task of Re‐Design

Create maintenance scheme SA (Integration, c8), after

FIGURE 13 Trustworthiness requirement‐oriented SIS process

20 of 28 ZHANG ET AL.
At the task level, threeTG_tasks of Redundancy Design were also encapsulated in theTG_task aspects. These aspects were woven into the Re‐

Design activity in Figure 14, and the weaving positions were before theMain task. The Main task in an activity is executed first when the activity is

executed.

At the global level, theTR‐oriented SIS process and Design Evolution process were added to the set TP. After updating the embedded relations

E, the original processes were deleted from the set P.

FIGURE 14 Trustworthiness requirement‐oriented design evolution process

ZHANG ET AL. 21 of 28
5 | EVALUATIONS

The following evaluations include analyses of the correctness, performance, and effectiveness of the approach from both theoretical and practical

points of view.
5.1 | Formal proofs of correct modeling and reasoning

5.1.1 | Soundness and completeness of the TRM reasoning

The TRM reasoning axiomatization would be soundness if the propagation through the backward axioms was shown to reflect the intended

relations of the propagation through the relation axioms, given the same inputs and the constraints on the TRM in Section 2. The completeness

of the reasoning shows that we have considered propagation rules for every combination of status label and relation type, given the constraints on

the TRM in Section 2.

Let trm = (N, R) be aTRM. Let nx1, ⋯, nxi ∈ N be theTG_activity nodes and SL(nx1), ⋯, SL(nxi) their status labels. Let ny1, ⋯, nyj ∈ N be the trust-

worthiness goal nodes and soft goal nodes and SL(ny1), ⋯, SL(nyj) be their status labels. The following theorems state the soundness and complete-

ness with respect to the axiomatization.
Theorem 1. (Soundness of reasoning) If there exists a truth value assignment satisfying the relation axioms (RA1‐RA12), the backward

propagation axioms (BA1‐BA14), and the values SL(nx1), ⋯, SL(nxi) and SL(ny1), ⋯, SL(nyj), then SL(ny1), ⋯, SL(nyj) can be inferred from

SL(nx1), ⋯, SL(nxi) by means of the relation axioms RA1‐RA12.

Theorem 2. (Completeness of reasoning) If SL(ny1), ⋯, SL(nyj) can be inferred from SL(nx1), ⋯, SL(nxi) by means of the relation

axioms RA1‐RA12, then there exists a truth value assignment satisfying the relation axioms (RA1‐RA12), the backward propagation axioms

(BA1‐BA14), and the values SL(nx1), ⋯, SL(nxi) and SL(ny1), ⋯, SL(nyj).
The proofs of the soundness and completeness are similar to the proofs of Sebastiani et al32 and are omitted for the sake of simplicity.
5.1.2 | Correctness of the base‐aspect weaving

The structural correctness and dynamic correctness of base‐aspect weaving are defined in Section 3.2.2. Let tpa = (ad,W) be aTG_process aspect,

ad = (C,A; F , Ae,Ax) be the advice of tpa, and p = (C,A; F ,M0) be a base process. The following theorem states that the advices in the aspects are

enabled when they are woven into the base processes. The other theorems and proofs of structural correctness and dynamic correctness are

similar and are omitted for the sake of simplicity.
Theorem 3. If a base process p is enabled, the advice ad of an aspect tpa that is woven into p is enabled.

Proof. First, we prove that the activities in the entrance activity set Ae of ad are enabled. Then, we prove that the other activities in

ad are enabled. The relations between the other activities and the activities in Ae are sequence, selection, concurrency, or iteration.
According to the analysis of the base‐aspect weaving correctness in Section 3.2.2, the base‐aspect weavings include six weaving operations.

Here, we show the proof of flow weaving. According to the algorithm of condition‐activity flow weaving in Algorithm 2, dom(w. pc) ∈ p. C, since p

is enabled, there existsM′ andM′(dom(w. pc)) = 1, then, by following the transition firing rule of Petri nets, Ae is enabled at markingM′ (M′[Ae>). The

proofs of the other weaving operations are similar and are omitted for the sake of simplicity.

Next, we prove that the other activities in ad are enabled.

22 of 28 ZHANG ET AL.
Sequence relation: Let a ∈ ad. A be an activity that has a sequence relation with Ae, and a can only be enabled after the execution of Ae, thenM
′[Ae> and ¬M′[a>, but M′[Ae > M″[a>. At marking M′, Ae is enabled, and a is not enabled, but after Ae executes, the marking becomes M″, and a is

enabled.

Selection relation: Let a1, a2 ∈ ad. A be two activities that have selection relations with Ae, if M
′[Ae > M″, then ¬M″[{a1, a2}>, but M

″[a1> or M″

[a2>. After Ae executes, at marking M″, a1 and a2 cannot execute at the same time because which one of them will execute is dependent on the

execution result of Ae. But, a1 and a2 are enabled because tokens are resided at their input conditions. Q.E.D.

The proofs of the concurrency and iteration relations are similar and are omitted for the sake of simplicity.
5.1.3 | Completeness and correctness of the aspect‐aspect weaving

Aspect‐aspect interactions are necessary for establishing the desired overall behavior. However, if not treated properly, these interactions can give

rise to interferences. Interferences are interactions that violate the specified constraints. The generic constraints of aspect‐aspect weaving that

Kniesel and Bardey defined are completeness and correctness.38,39 Completeness states that in the aspect‐aspect weaving result, every aspect

effect must be applied at all pointcuts. Correctness states that in the weaving result, every aspect effect must be applied only at the pointcuts.

The following theorems state the completeness and correctness of aspect‐aspect weaving.
Theorem 4. (Completeness of aspect‐aspect weaving). Let TPA = {tpa1,⋯, tpaj} be a set of aspects. If any two aspects inTPA have a joint

pointcut and are woven together sequentially based on their data dependence relation, the aspect‐aspect weaving has completeness.

Proof. According toTheorem 3, when the aspects inTPA are woven into the base processes, they are all enabled. Let tpa1 and tpa2

be two aspects in TPA that have data dependence relations. If they are woven together sequentially based on their data depen-

dence relations, there exists M′, M′[ad1. A> and ¬M′[ad2. A>, but M
′[ad1. A > M″[ad2. A>. ad2. A is enabled after ad1. A executes

and obtains the resources from tpa1. Thus, ad2. A is not only enabled but also has the resources that it needs to let its effect be

applied at the pointcut. Q.E.D.

Theorem 5. (Correctness of aspect‐aspect weaving). Let TPA = {tpa1,⋯, tpaj} be a set of aspects. If any two aspects in TPA have a joint

pointcut and are woven together in a selection relation based on their control dependence relation, the aspect‐aspect weaving has

correctness.

Proof. According to Theorem 3, when the aspects in TPA are woven into the base processes, they are all enabled. Let tpa1, tpa2,

and tpa3 be three aspects in TPA that have a control dependence relation. tpa2 and tpa3 are in a selection relation, that is, only

one of them can execute. Whether tpa2 executes or tpa3 executes is dependent on the execution result of tpa1. If M′[ad1.

A > M″, then ¬M″[{ad2. A, ad3. A}>, but M
″[ad2. A> or M″[ad3. A>. Only one of ad2. A and ad3. A is enabled after ad1. A executes

and obtains the resources. Thus, at the pointcut, the aspect effect of ad2. A and ad3. A can only be applied in accordance with

the execution result of tpa1. Q.E.D.
5.2 | Comparisons of modeling effectiveness

The modeling effectiveness is compared in the following. Before comparison, the project team conducted a thorough check of the defini-

tions of the processes and assessed the performance of the aspect‐oriented modeling. The checked processes included the base processes,

the advices in aspects, and the trustworthiness processes. The checking procedure was performed automatically first and was followed by

discussion within the project team. When the base processes and aspects were defined, the model checking was used to check the struc-

tural and dynamic properties automatically. During the weaving of the aspects, the weaving correctness was checked according to the

aspect‐aspect correctness and base‐aspect correctness. When the woven trustworthiness processes were generated, their definitions were

discussed within the project team to better assure the process trustworthiness. The performance of the aspect‐oriented modeling was also

assessed.
5.2.1 | Performance assessment of aspect‐oriented modeling

In our performance assessments, we have considered the following:

(1) The number of trustworthiness goals and soft goals. Intuitively, the greater the number of trustworthiness goals and soft goals, the more

complex the reasoning, and hence, the more time that is required for the reasoning operations.

(2) The size of the process model in terms of the number of activities. Intuitively, the greater the number of aspects, the more the codes

increase, and the greater the number of activities, thus increasing the time needed for the correctness analysis.

(3) The dependence relations of the weaving aspects. Intuitively, the weaving of the aspects is expected to introduce additional complexity due

to the additional dependencies they add to the base process.

ZHANG ET AL. 23 of 28
The first and second factors were taken into account by analyzing the performance using the case study models and randomly generated

models of different sizes. When randomly generating 10 models, we avoided the risk of creating incorrect models by introducing a validity check

of the model before executing the analysis operation. To minimize the impact of external factors on our results, each analysis operation was exe-

cuted 10 times for each experiment to average values. The third factor was considered by analyzing the performance of the different dependen-

cies. Three categories of dependences were evaluated: aspect‐aspect data dependence, aspect‐aspect control dependence, and base‐aspect

dependence, which correspond to the weaving mechanism discussed above.

The evaluation results for the first factor are the runtimes of theTRM reasoning. Since zChaff has had success in solving problems with more

than one million variables and 10 million clauses,33 the total run times were all non‐measurable (the total run times of our case study model are

shown in Figure 12A,B) for all of our models, including the case study model and randomly generated models. The variables and clauses of our case

study model were 58 and 65. The TG_activities we collected and listed in Table 2 were 120. Therefore, we generated models with 60 to 600

clauses and used our modified zChaff to reason. The total run times were always non‐measurable.

The evaluation results for the second and the third factors are similar. The size of the process model in terms of adding aspects increased in

the model codes. These increased codes were aspect definitions, aspect weaving configuration data, and XML tags. However, the correctness

analysis time did not increase, and the total run time was approximately 0.1 to 0.4 seconds. Even when generating models with different depen-

dence relations, the analysis time remained at this scale.
5.2.2 | Trustworthiness improvement of TROSP

TG_activities are designed to improve the trustworthiness of software by integrating them into the software processes. In the case study of the

SIS software, 44 TG_activities were designed and integrated into the base processes at different levels. In practice, are TG_activities effective in

trustworthiness improvement? To compare the changes in the trustworthiness of the SIS software, we collected project data for 2 months to

assess the effects of the TG_activities. As an example, we use the activity Code Review as one of our evaluation objects. During the evolution

development of the SIS software, after the execution of Evolution Test (see Figure 13), all developed codes were sent to the Code Review activity.

Code Review is a TG_activity in which a set of program code is examined systematically by one or more peer reviewers. The intent is to find mis-

takes overlooked in software development and to improve the overall quality of the software. To compare the trustworthiness changes, we use

defect rate to represent the trustworthiness. A lower defect rate indicates higher trustworthiness.

During the evolution procedure of the SIS software, the first 17 weeks were the phases of the evolution requirements analysis and evolution

design. From the 18th week, evolution development began, and the evolution codes were submitted to the Code Review activity. From the 18th

week to the 25th week, the defect rates before and after the execution of the Code Review activity were collected and are listed in Figure 15A.

Figure 15B depicts the improvement result of these defect rates. Using these 2 months of data, we simulate the defect rate changes in the future

115 weeks to see the trend of defect rate changes. Figure 15C shows the simulation result. The upper line is the defect rate before Code Review,

and the lower line is the result after Code Review is executed.

As another example, Requirements V&V is another TG_activity that was woven after Proposal for Changes (see Figure 14). This TG_activity ana-

lyzes the evolution requests from Proposal for Changes to decide which are valid requests and to make a priority list for these requests. The elim-

ination of invalid and duplicate evolution requests reduces the invalid efforts of the project team. The priority list helps the project team reduce

rework efforts and improve software quality. Figure 16A compares the number of valid requests before and after Requirements V&V. From the 18th

week to the 21st week, invalid and duplicate requests were analyzed by the project team to verify the effectiveness of Requirements V&V. From

the 22nd week to the 25th week, because the Requirements V&V was effective, the invalid and duplicate requests were no longer analyzed. We

compared the defect rates in these 2 months and found that the number of invalid and duplicate requests increased with the defect rate. We used

the same simulation method to compare the defect rate changes in the future 115 weeks. Figure 16B shows the simulation result. The upper line is

the defect rate when Requirements V&V is not executed, whereas the lower line is the result when Requirements V&V is executed. The results show

a decrease on the defect rate after Requirements V&V.
5.3 | Limitation

Although we got a positive result from the case study, we still found two limitations that are needed to be solved.

First, a knowledge base for TRM modeling has been created to provide NFRs, TG_activities, and their decomposition, implementation, and

contribution relations. However, in the case study, only some of theTG_activities were chosen in the final TRM because too many additional activ-

ities may extend the duration of the project and cause complexity. Therefore, the project team discussed tailoring theTRM in the first four meet-

ings and continued these discussions for many times during the evolution development. Based on the results of this case study, a new architecture

for the knowledge base is proposed. In the new architecture, a general knowledge base, a domain knowledge base, and an individual knowledge

base will be designed for better support of the modeling and tailoring of TRMs.

Second, theTPAT tool is useful in helping users weave the aspects and analyze the weaving correctness but not in defining the aspects. When

defining an aspect, the pointcuts and weaving positions of the aspect rely on the base processes. A better understanding of the base processes is

important. Therefore, in the case study, all activities in the base processes, as well as the input and output artifacts, were analyzed before defining

FIGURE 15 Trustworthiness improvement of code review activity: A, comparison of the defect rate; B, improvement results for the defect rate;
C, simulation of the code review activity

FIGURE 16 Trustworthiness improvement of the Design V&V activity: A, comparison of the number of valid; B, simulation of Requirements V&V
activity

24 of 28 ZHANG ET AL.

ZHANG ET AL. 25 of 28
the aspects. In addition, an agile process was used to deliver the evolution software in every sprint, and the weaving of the aspects could be

adjusted in the next sprint. However, providing better support for defining the aspects is a problem that remains to be solved.
6 | RELATED WORK

6.1 | Trustworthiness requirements modeling and reasoning

Goal‐oriented requirement engineering is probably the most popular method for modeling and analyzing NFRs. The NFR framework,40 knowledge

acquisition in automated specification,41 i* families (including i* model, Tropos, Goal‐oriented Requirement Language),42-44 and Techne45 are the

basic methods and languages of goal‐oriented requirement engineering. Subsequently, more goal‐oriented approaches and frameworks have been

formulated. The focus of this research has been mostly on modeling and reasoning, with the aim of assisting software engineers in analyzing NFR

relations. Among these studies, only Zhu et al46 used soft goal interdependency graphs to address NFR correlation analysis in trustworthy soft-

ware. To analyze the positive and negative contribution relations of the NFRs and operation tasks, either forward or backward reasoning is used.

In backward reasoning, Giorgini and co‐authors first used a SAT solver for goal models to assign strategies that satisfy the desired status of the

NFRs.47-49 Subsequently, Sebastiani et al,32 Horkoff and colleagues,31,50 and Ernst et al51 improved this backward reasoning technique. Their

approaches are effective for NFRs analysis. By adapting their work, we defined our propagation axioms to find the trustworthiness goal‐oriented

activities.
6.2 | Trustworthy software and software processes

As noted previously, software development and evolution are process‐intensive undertakings.1 To improve the trustworthiness of software, three

types of process‐oriented methods have been proposed. They are software process improvement, phase‐specific software development, and pro-

cess quality assurance.

Software process improvement is intended to define a method for analyzing, quantifying, and enhancing the efficiency and quality of the soft-

ware process involved in software production and delivery. The main objective is to make software processes repeatable and consequently min-

imize the number and magnitude of errors in the processes. Model‐driven process improvement and measure‐driven process improvement are

two different software process improvements. The best known model‐driven process improvement models are capability maturity model

(CMM), and its variants, CMM integration (CMMI) and secure systems engineering‐CMM.52 Define measure analyze improve control (DMAIC)

and define measure analyze design verify (DMADV) of Six Sigma are representatives of measure‐driven software process improvement.

Phase‐specific software development methodologies tend to be more detailed in that they describe not only what activities should occur dur-

ing a particular life cycle phase but also how those activities should be performed. Microsoft's SDLC,10 software assurance maturity model of open

web application security project,29 Secure Software Inc.'s comprehensive lightweight application security process,53 McGraw's Touchpoints,54 and

correctness by construction55,56 define a wide variety of activities an organization could engage in to reduce risks and increase software assur-

ance. Our TROSP modeling is also a phase‐specific software development method. A number of TR‐oriented activities are included in the software

development life cycle. Furthermore, formal correctness is defined, examined, and proved for process quality assurance.

Software quality cannot be ensured without guaranteeing the quality of the process by which the software is developed. Trusted Software

methodology,6 trustworthy process management framework,1 and transformable process modeling20 specify the process attributes that contrib-

ute to enhanced software trustworthiness.
6.3 | Aspect‐oriented Petri nets and correctness

To provide a detailed TROSP modeling approach and to control the correctness of the modeling, we proposed to use aspect‐oriented Petri nets to

model and provide correctness.

Some previous studies had proposed the approach of modeling aspect‐oriented Petri nets. Roubtsova and Aksit proposed the Aspect Petri

Net notation.57 Xu and Nygard proposed aspect‐oriented Predicate‐Transition Petri net.58 Molderez et al59 presented the aspect‐oriented exten-

sion to Petri nets. Only Guan et al60 used Xu and Nygard's aspect‐oriented Predicate‐Transition Petri net58 and Nagy's aspect relations defini-

tions61 to resolve the problems with aspect‐aspect correctness.

In aspect‐oriented methods, aspect‐aspect correctness has also been studied by many researchers for many years, such as Constantinides

et al's moderator pattern,62 Kiczales et al's dominates modifier in AspectJ,63 Douence et al's general aspect independences,64,65 Pawlak et al's

CompAr,66 Nagy et al's ordering and control constraints,61 Durr et al's semantics definition of advices on an abstract resource model,67 Kniesel

and Bardey's incorrect and incomplete weaving,38,39 and Dinkelaker et al's feature interactions.68

In summary, in these studies, aspect‐aspect correctness is determined by the correct interdependent aspects. This type of correctness is

ensured by first analyzing the interdependencies among the aspects and then weaving them based on the interdependencies. We used the same

method in this paper. However, there has been no study of base‐aspect correctness. As mentioned above, the analysis and control of base‐aspect

correctness should also be considered.

26 of 28 ZHANG ET AL.
7 | CONCLUSIONS

A trustworthy software process is “a process that is capable of producing a range of trustworthy software products”.20 In this paper, our aims were

to explore theories and methods for enhancing, improving, and innovating software process techniques and to support the development and pro-

duction of large‐scale complex trustworthy software. We investigated the mechanism for integrating trustworthiness goal‐oriented activities into

software processes and developed effective tools to aid the modeling of TROSPs. The major contributions of this paper are the following:

• We proposed an approach to modeling TROSPs. These processes deliver trustworthiness by introducing trustworthiness goal‐oriented activ-

ities (TG_activities) and ensuring the correctness of the process modeling.
• Since the enforcement of a TG_activity may undermine the satisfaction of the other TRs, goal‐oriented modeling and reasoning for TRs

were provided to find TG_activities that satisfy multiple TRs.

• When integrating TG_activities into software processes, aspect‐oriented modeling techniques were adopted. Correctness of the integra-

tion between multiple TG_activities and between TG_activities and software processes was analyzed, and correct integration methods

were designed. Errors or mistakes of process modeling can be prevented.
• Based on the aspect‐oriented modeling techniques, plug‐ins for generatingTROSPs provide flexibility and maintainability in an organized man-

ner. The proposed approach of process modeling can adequately match the evolutions and changes in the TRs.

The evaluations in Section 5 proved the correctness of our modeling and reasoning and demonstrated the modeling efficiency and feasibility

of improving trustworthiness. Limitations were also discussed. Corresponding future work will provide better support for TR modeling and for

defining aspects. In addition, guidance will be provided to industry on practical aspects of the modeling to allow further validation with a greater

variety of realistic cases.

ORCID

Xuan Zhang http://orcid.org/0000-0003-2929-2126

REFERENCES

1. Yang Y, Wang Q, Li MS. Process trustworthiness as a capability indicator for measuring and improving software trustworthiness. International Confer-
ence on Software Process (ICSP'09), Vancouver, Canada. Springer: Berlin. 2009;5543(5):389‐401.

2. McLean J. Trustworthy software why we need it, why we don't have it, how we can get it. International Computer Software and Applications Confer-
ence (COMPSAC'06), Chicago. IEEE Computer Society: Silver Spring MD. 2006;1(9):32‐33.

3. Van Der Aalst WMP. The application of petri nets to workflow management. Journal of Circuits, Systems and Computers. 1998;8(1):21‐45.

4. Reisig W. Petri Nets: An Introduction. Berlin: Springer Verlag; 1985.

5. Li CY, Ge JD, Huang LG, et al. Software cybernetics in BPM: modeling software behavior as feedback for evolution by a novel discovery method based
on augmented event logs. The Journal of Systems and Software. 2017;124:260‐273.

6. Amoroso E, Taylor C, Watson J. Weiss J. A process‐oriented methodology for assessing and improving software trustworthiness. In the Proceedings of
the 2nd ACM Conference on Computer and Communications Security (CCS'94), 1994:39‐50.

7. United States Department of Defense. Trusted Computer System Evaluation Criteria (TCSEC). DoD 5200.28‐STD. Washington: Department of
Defense. http://www.cerberussystems.com/INFOSEC/stds/d520028.htm, 1985, 12.

8. IEC. International Electrotechnical Vocabulary—Part 192: Dependability (IEC 60050‐192 Ed.1.0), 2015, 2.

9. Howard M, Leblanc D. Writing Secure Code. Microsoft Press; 2002.

10. Howard M, Lipner S. The Secure Development Life‐Cycle. Microsoft Press; 2006.

11. Trusted Computing Group (TCG), 2007. TCG Specification Architecture Overview, Revision 1.4. http://www.trustedcomputinggroup.org.

12. Littlewood B, Strigine L. Software reliability and dependability: a roadmap. In: Finkelstein, A. (Ed.). The Future of SE, ICSE'22, IEEE, 2000:175‐188.

13. Schmidt H. Trustworthy components—compositionality and prediction. The Journal of Systems and Software. 2003;65(3):215‐225.

14. Neumann PG. Principled Assuredly Trustworthy Composable Architectures. Computer Science laboratory, SRI International: Project Report; 2004.

15. NSS2. Software 2015: a national software strategy to ensure U.S. security and competitiveness. http://www.cnsoftware.org/nss2report/, 2005, 4.

16. Bernstein L, Yuhas C. Trustworthy Systems through Quantitative Software Engineering. 1 New York, Silver Spring MD: Wiley‐IEEE Computer Society
Press; 2005.

17. HasselbringW RR. Toward trustworthy software systems. Computer. 2006;39(4):91‐92.

18. Miller A, Mclean J, Saydjari O, Voas J. Compsac panel session on trustworthy computing. COMPSAC'06: Proceedings of 30th Annual International
Computer Software and Applications Conference, Chicago IL, vol. 1. IEEE Computer Society: Silver Spring MD, September 2006;31.

19. Trustie. Software Trustworthiness Classification Specification (TRUSTIE‐STC v 1.0), 2009, http://www.trustie.net/.

20. Zhang H, Kitchenham B, Jeffery R. Toward trustworthy software process models: an exploratory study on transformable process modeling. Journal of
Software: Evolution and Process. 2012;24(7):741‐763.

21. Dalkey N, Helmer O. An experimental application of the Delphi method to the use of experts. Management Science. 1963;9(3):458‐467.

22. Lyu R. Handbook of Software Reliability Engineering. IEEE Computer Society: Washington; 1996.

http://orcid.org/0000-0003-2929-2126
http://www.cerberussystems.com/INFOSEC/stds/d520028.htm
http://www.trustedcomputinggroup.org
http://www.cnsoftware.org/nss2report
http://www.trustie.net

ZHANG ET AL. 27 of 28
23. Musa D. Software Reliability Engineering [M]. Columbus: McGraw‐Hill; 1999.

24. Anderson R. Security Engineering. Hoboken, NJ: John Wiley & Sons; 2008.

25. Ericson A. Hazard Analysis Techniques for System Safety. Hoboken, NJ: John Wiley & Sons; 2005.

26. United States Department of Defense. Standard practice for system safety, MIL‐STD‐882D. http://www.system‐safety.org/Documents/MIL‐STD‐
882D.pdf, 2000, 2.

27. Nielsen J. Usability Engineering. New York: Elsevier Ltd Oxford; 1994.

28. Boehm B, In H. Identifying quality‐requirement conflicts. IEEE Software. 1996;13(2):25‐35.

29. OWASP (the open web application security project). Software assurance maturity model—a guide to building security into software development.
http://www.opensamm.org/. 2009.

30. Li T. An Approach to Modelling Software Evolution Processes. Berlin: Springer‐Verlag; 2008.

31. Horkoff J, Yu E. Finding solutions in goal models: an interactive backward reasoning approach. In: Conceptual Modeling–ER 2010. Berlin Heidelberg:
Springer; 2010:59‐75.

32. Sebastiani R, Giorgini P, Mylopoulos J. Simple and Minimum‐Cost Satisfiability for Goal Models. Berlin Heidelberg: Advanced Information Systems Engi-
neering, Springer; 2004:20‐35.

33. Princeton University, zChaff 2007.3.12. http://www.princeton.edu/~chaff/zchaff.html.

34. Choe Y. prop2chf.py. CSCE 625: introduction to machine learning. http://faculty.cs.tamu.edu/ioerger/cs625‐fall11/prop2cnf.py.

35. Blair GS, Blair L, Rashid A, Moreira A, Araújo J, Chitchyan R. Engineering Aspect‐Oriented Systems. Addision‐Wesley, Boston: Aspect‐Oriented Software
Development; 2005:379‐406.

36. Schauerhuber A, Schwinger W, Kapsammer E, Retschitzegger W, Wimmer M, Kappel G. A Survey on Aspect‐Oriented Modeling Approaches. Relatorio
tecnico: Vienna University of Technology; 2007.

37. Imperial College London. Platform independent petri net editor (PIPE) v4. https://sourceforge.net/projects/pipe2/?source=navbar, 2013.

38. Kniesel G, Bardey U. An analysis of the correctness and completeness of aspect weaving. The 13th Working Conference on Reverse Engineering
(WCRE'06), IEEE, 2006:324‐333.

39. Kniesel G. Detection and Resolution of Weaving Interaction. Transactions on Aspect‐Oriented Software Development, Springer, Berlin Heidelberg;
2009:135‐186.

40. Mylopoulos J, Chung L, Nixon B. Representing and using nonfunctional requirements: a process‐oriented approach. IEEE Trans on Software Engineering.
1992;18(6):483‐497.

41. Van Lamsweerde A, Darimont R, Letier E. Managing conflicts in goal‐driven requirements engineering. IEEE Trans on Software Engingeering.
1998;24(1):908‐926.

42. Yu E. Towards modeling and reasoning support for early‐phase requirements engineering. The 3rd IEEE International Symposium on Requirements
Engineering, 1997: 226−235.

43. Castro J, Kolp M, Mylopoulos J. Towards requirements‐driven information software engineering: the Tropos project. Information Software.
2002;27(6):365‐389.

44. Amyot D, Mussbacher G. URN: towards a new standard for the visual description of requirements. In: The Telecommunications and Beyond: The Broader
Applicability of SDL and MSC. Berlin, Heidelberg: Springer‐Verlag; 2003:21‐37.

45. Jureta IJ, Borgida A, Ernst NA, Mylopoulos J. Techne: towards a new generation of requirements modeling languages with goals, preferences, and
inconsistency handling. The18th IEEE international requirements engineering conference, Sydney. 2010;11:115‐124.

46. Zhu MX, Luo XX, Chen XH, Wu DD. A non‐functional requirements tradeoff model in trustworthy software. Information Science. 2012;191:61‐75.

47. Giorgini P, Mylopoulos J, Nicchiarelli E. Reasoning with goal models. Conceptual modeling—ER 2002. Berlin Heidelberg: Springer; 2002:167‐181.

48. Giorgini P, Mylopoulos J, Nicchiarelli E, Sebastiani R. Formal reasoning techniques for goal models. Journal on Data Semantics. 2003;11(1):1‐20.

49. Giorgini P, Mylopoulos J, Sebastiani R. Goal‐oriented requirements analysis and reasoning in the Tropos methodology. Eng Appl Artif Intel.
2005;18(2):159‐171.

50. Horkoff J, Yu E. Interactive goal model analysis for early requirements engineering. Requirements Engineering Springer. 2016;21(1):29‐61.

51. Ernst NA, Mylopoulos J, Borgida A, Jureta IJ. Reasoning with optional and preferred requirements. In: Conceptual Modeling‐ER 2010. Berlin Heidelberg:
Springer; 2010:118‐131.

52. CMU. Systems Security Engineering Capability Maturity Model SSE‐CMM: Model Description Document, Version 3.0, 2003.

53. Secure Software Inc. The CLASP application security process. http://www.ida.liu.se/~TDDC90/papers/clasp_external.pdf, 2005.

54. McGraw G. Software Security: Building Security in. Addison‐Wesley Professional; 2006.

55. Hall A, Chapman R. Correctness by construction: developing a commercial secure system. IEEE Software. 2002;1:18‐25.

56. Hall A. Correctness by construction: integrating formality into a commercial development process. In: Formal Methods—Getting IT Right (FRM 2002),
LNCS 2391. Springer Verlag; 2002:224‐233.

57. Roubtsova EE, Aksit M. Extension of petri nets by aspects to apply the model driven architecture approach. The 1st International Workshop on Aspect‐
Based and Model‐Based Separation of Concerns in Software Systems (ABMB). Nuremberg, Germany, 2005.

58. Xu DX, Nygard K. Threat‐driven modeling and verification of secure software using aspect‐oriented petri nets. IEEE Transactions on Software Engineer-
ing. 2006;32(4):265‐278.

59. Molderez T, Meyers B, Janssens D, Vangheluwe H. Towards an aspect‐oriented language module: aspects for petri nets. The 7th workshop on Domain‐
Specific Aspect Languages. ACM. 2012;3:21‐26.

60. Guan LW, Li X, Hu H, Lu J. A petri net‐based approach for supporting aspect‐oriented modeling. Frontiers of Computer Science in China.
2008;2(4):413‐423.

http://www.system-safety.org/Documents/MIL-STD-882D.pdf
http://www.system-safety.org/Documents/MIL-STD-882D.pdf
http://www.opensamm.org
http://www.princeton.edu/~chaff/zchaff.html
http://faculty.cs.tamu.edu/ioerger/cs625-fall11/prop2cnf.py
https://sourceforge.net/projects/pipe2/?source=navbar
http://www.ida.liu.se/~TDDC90/papers/clasp_external.pdf

28 of 28 ZHANG ET AL.
61. Nagy I, Bergmans L, Akşit M. Composing aspects at shared join points. International Conference NetOjectDays (NODe2005), Lecture notes in
Computer Science, Springer, 2005:69‐84.

62. Constantinides CA, Bader A, Elrad T. An aspect‐oriented design framework for concurrent systems. In: The ECOOP'99 Workshop on Aspect‐Oriented
Programming. Portugal: Lisbon; 1999:302‐311.

63. Kiczales G, Hilsdale E, Hugunin J, Kersten M, Palm J, Griswold WG. An overview of aspectJ. European Conference on Object‐Oriented Programming
(ECOOP), 2001:327‐353.

64. Douence R, Fradet P, Südholt M. A Framework for the Detection and Resolution of Aspect Interactions. Berlin Heidelberg: Generative Programming and
Component Engineering, Springer; 2002:173‐188.

65. Douence R, Fradet P, Südholt M. Composition, reuse and interaction analysis of stateful aspects. The 3rd international conference on aspect‐oriented
software development, ACM, 2004:141‐150.

66. Pawlak R, Duchien L, Seinturier L. CompAr: Ensuring Safe Around Advice Composition. Berlin Heidelberg: Formal Methods for Open Object‐Based
Distributed Systems, Springer; 2005:163‐178.

67. Durr P, Staijen T, Bergmans L, Akşit M. Reasoning about semantic conflicts between aspects. The 2nd European Interactive Workshop on Aspects in
Software (EIWAS'05), 2005:10‐18.

68. Dinkelaker T, Erradi M, Ayache M. Using aspect‐oriented state machines for detecting and resolving feature interactions. Computer Science and
Information Systems. 2012;9(3):1045‐1074.

How to cite this article: Zhang X, Wang X, Kang YN. Trustworthiness requirement‐oriented software process modeling. J Softw Evol Proc.

2018;30:e1991. https://doi.org/10.1002/smr.1991

https://doi.org/10.1002/smr.1991

