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Abstract—The parking lot is one of the important compo-
nents of the intelligent transportation system (ITS). The current
parking lots mainly use instant parking, which has low parking
efficiency, during peak hours, which leads to traffic congestion.
To guarantee the stable operation of parking lots, we propose a
blockchain-enabled parking reservation framework, called BPR.
Traditional parking reservation systems may exist the condition
of malicious reservations, and resulting in wasted parking spaces.
Therefore, we design a reputation mechanism to manage the
parking reservation behavior of vehicles and reduce the number
of malicious nodes. In addition, to balance the performance
of the blockchain at different times (especially during peak
hours), we use deep learning (DL) to dynamically adjust the
block size to make the blockchain run more efficiently and
stably. We deploy the system in Hyperledger Fabric and conduct
effectiveness experiments. The comprehensive evaluation results
and analysis show that the proposed reputation mechanism can
effectively curb malicious nodes from reserving parking spaces
and reduce the waste of parking resources. And the block size
will be dynamically adjusted to balance the performance of the
blockchain at different periods, this method is also applicable to
other blockchain performance-sensitive scenes. Finally, this paper
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is compared with related work to demonstrate the innovation and
feasibility of this work from various aspects.

Index Terms— Blockchain, parking reservation, deep learning,
reputation, block size.

I. INTRODUCTION

HE parking lot play an important role in ITS, and every

city has many parking lots. They can be divided into
free parking lots and paid parking lots by charging mode;
public parking lots and private parking lots by function. The
distribution and number of parking lots may affect the traffic
congestion level of cities [1], [2].

However, with the increase in car ownership and the
construction of urban roads, the parking lots at this stage
often have difficulty meeting the demand, especially during
the peak hours. For drivers, finding parking spaces is both
time-consuming and laborious [3]. Solving such problems by
adding more parking spaces alone would require significant
economic costs and would require modifications to existing
urban planning, which may further complicate the problem.

Drivers are often left to search blindly, which is one of
the reasons for parking congestion. According to a 2017 USA
Today report, the average U.S. driver spends 17 hours per
year searching for a parking space on a street, in a lot, or in
a garage. In New York City, the hardest-hit metropolitan area
in the U.S., drivers spend an average of 107 hours per year
searching for a parking space. The report estimated the cost
of wasted time, fuel, and emissions at $2,243 per driver [4].

At present, many studies have focused on solving the
problem of parking space navigation (e.g., improved nav-
igation algorithm [5], [6]), parking schemes (e.g., parking
management system [7], [8], parking guidance [9], [10], [11],
parking assignment [12], [13]), and traffic flow pridiction [14].

Enabling parking reservation is a good way to this problem.
Studies have shown that the average parking-related traffic
during peak hours can be 30-50% of the total traffic volume
[15]. Therefore, parking reservation will play an important
role in relieving urban traffic congestion (especially during
peak hours). Currently, some studies have focused on parking
reservation solutions [16], [17], [18]. However, few researchers
have considered the reputation of vehicles in these solutions.
Also, when conducting parking reservation, the vehicle needs
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to provide some private information, so attention to the privacy
of the vehicle is also needed.

Based on the immutability and traceability of blockchain,
some solutions for parking reservations can be designed
in combination with reputation mechanisms. Currently, the
application of blockchain technology to the Internet of Vehi-
cles (IoV) has received some attention [19]. To solve the
problems in the IoV, some researchers have proposed different
schemes for the combination of the IoV and the blockchain
(e.g., privacy protection [20], [21], [22], [23], [24], vehicle
life cycle [25], vehicle supply chain [26], vehicular edge
computing [23], [27], [28], [29], electronic toll collection [30].
However, these existing blockchain-based solutions do not
directly address the problems of parking systems. Limited
by the number of vehicles and the performance of onboard
devices, the consortium chain platform is more suitable than
the public chain platform for the problems we want to solve.

Specifically, we propose a blockchain-based parking system
framework to build communication between vehicles and
parking lots for protecting drivers’ private information and
making parking more efficient. We design an algorithm to
simulate based-reservation parking mode. At the same time,
we also design a reputation mechanism to manage the reser-
vation behavior of vehicles to prevent malicious vehicles from
reserving unlimited parking spaces and wasting of parking
resources. However, the introduction of blockchain leads to
some performance bottlenecks (during peak hours, this can
lead to higher latency or lower throughput, which can hinder
blockchain network operations), because block size (usually
set artificially) and transaction arrival rate (parking transaction
flow in this paper) can significantly affect the performance of
blockchain, and the parking transaction flow at different time
slots is different in real-world scenes. Therefore, we introduce
DL methods to dynamically adjust the block size to balance
the performance (throughput and latency) of the blockchain
under different traffic flow to meet the requirements of real-
world scenes, to the best of our knowledge, this is the first
research work that uses DL methods to dynamically adjust
the block size.

The main contributions of this paper are described as
follows.

1) We propose a blockchain-based parking system frame-
work that is more efficient and secure than tradi-
tional parking systems, namely BPR. In this framework,
we design a blockchain-based parking architecture that
can effectively protect the privacy of drivers and reserve
parking. To prevent the waste of parking resources due to
unlimited reservations by malicious vehicles, we design
a reputation mechanism to manage the parking behavior
of vehicles.

2) To balance the performance of the blockchain under dif-
ferent periods, we introduce DL methods to dynamically
adjust the block size. To the best of our knowledge, this
is the first time that DL methods is used to dynami-
cally adjust the block size and balance the performance
of blockchain. This method can be used not only for
the parking lot, but also for other performance-sensitive
blockchain scenes (e.g., online shopping mall, bank
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credentials). In addition, we also contribute a real-world
blockchain performance dataset for other researchers to
use.

3) We deploy the proposed system. The experimental results
and analysis show that, our proposed parking system
framework is higher scalability compared to existing
related work. Because the reservation-based parking
mode is more efficient than the traditional parking mode.
The reputation-based vehicle parking behavior manage-
ment can effectively prevent malicious vehicles from
making failed reservations. The DL-based block size
dynamic adjustment method can effectively adjust the
block size in different periods, so that the performance
of the blockchain can be balanced in different periods.

The rest of this paper is organized as follows: in

Section II, we discuss the work related to parking reser-
vation, blockchain-based parking lot systems, and DL with
blockchain. In Section III, we introduce BPR system model,
including the architecture design of BPR, reservation-based
parking mode, and a reputation-based mechanism for man-
aging vehicle parking behavior. Section IV then presents
the details of the DL-based block size dynamic adjustment
method. Section V describes the deployment of our pro-
posed system. In Section VI, we evaluate and analyze the
performance and features of our proposed system. Finally,
Section VII concludes the paper.

II. RELATED WORK
A. Parking Reservation

In recent years, researchers have put forward some schemes
for making reservations for parking. For instance, Tasseron
et al. [31] used an agent-based analysis method to study the
impact of the on-street parking reservation system and proved
that parking reservations can effectively reduce the time for
drivers to find parking spaces, but they did not consider the
impact of unlimited reservations on parking spaces. Wan et al.
[32] proposed a secure crowdsourcing-based parking reserva-
tion system called SCPR, private owners can rent out park-
ing spaces. Huang et al. [18] proposed a privacy-preserving
reservation scheme for autonomous vehicles to protect the
private information of drivers. To avoid repeated reserva-
tions for vehicles during the reservation period, they set up
a reservation token, but they also did not consider those
malicious vehicles may make unlimited parking reservations
outside of the scheduled time. Waheed et al. [17] proposed a
learning automaton and reservation-based secure smart parking
system, which effectively reduces the time for drivers to search
for parking spaces. But they did not manage the parking
reservation behavior of vehicles.

It is important to manage the parking reservation behavior
of vehicles. However, the existing research work has studied
this part very little. This is the motivation for us to design the
reputation-based mechanism and introduce blockchain.

B. Parking Lot System Based on Blockchain

Blockchain has many applications in the field of ITS. The
combination of blockchain and the parking systems has also
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attracted the attention of some researchers. Hu et al. [33] pro-
posed a blockchain-based privacy-preserving system, which
aims to protect the privacy of users without relying on third-
party entities. Zhang et al. [34] proposed a blockchain-enabled
smart parking scheme called BSFP, which efficiently realized
the reliability and fairness of parking and the privacy protec-
tion of private parking space owners. Wang et al. [35] proposed
a rewards Airbnb-like privacy-enhanced private parking spot
sharing scheme based on blockchain, this solution does not
require the participation of a trusted third party and realizes
security and privacy protection under the premise of acceptable
computing cost and communication overhead. Badr et al. [36]
presented a smart parking system with privacy preservation
and reputation management using blockchain, in this system,
drivers can evaluate parking services anonymously to ensure
high-quality services. Zhu et al. [14] proposed an anonymous
smart parking and payment scheme in an in-vehicle network.
They used short random signatures to provide anonymity and
conditional privacy. Also they used hashmap for fast result
matching and E-cash for anonymous payments. Li et al. [24]
proposed an efficient and privacy-preserving parking-space
recommendation service platform, namely PriParkRec, along
with the proof-of-concept solution to protect the requester’s
privacy.

Inspired by the above work, we propose a parking system
framework based on blockchain and reputation mechanism to
improve some shortcomings of the current work and make it
more feasible and applicable.

C. DL With Blockchain

Both DL and blockchain are currently popular research
directions. Therefore, research on the combination of DL and
blockchain has also received a lot of attention.

To address some of the challenges in service request
orchestration in software-defined networks (SDN), Zhang et
al. [37] proposed a solution based on artificial intelligence
and blockchain. It is demonstrated theoretically and empiri-
cally that the proposed algorithm can provide efficient and
intelligent request orchestration in SDN with extreme security.
For the 5G intelligent Internet of Things, Rathore et al. [38]
proposed a deep learning and blockchain authorization security
framework, which uses DL capabilities for inteligent data
analysis operations and uses blockchain to protect data secu-
rity. Wang et al. [39] proposed a blockchain-based in-vehicle
crowd perception system to protect user privacy and data
security in 5G IoV and to maximize security and minimize
blockchain delays, an algorithm that enables deep reinforce-
ment learning (DRL) is proposed to select suitable active
miners and transactions. To detect driver behavior in smart
cars, Khan et al. [40] proposed a DL and blockchain fusion
solution, experiments with related work show that this method
has a high accuracy rate on the test data set. Dai et al.
[41] proposed a solution based on deep reinforcement learn-
ing and consortium blockchain to implement secure network
content caching through in-vehicle edge computing. Boateng
et al. [42] proposed a novel hierarchical framework and a
multi-agent DRL method for blockchain-empowered spectrum
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trading for network slicing in radio access network. Security
assessment and extensive simulation results confirmed the
security and efficiency of this proposed method in terms
of players’ utility maximization and fairness, compared with
other baselines. Boateng et al. [43] proposed a hierarchical
blockchain-DRL framework for secure resource trading and
autonomous resource slicing in 5G radio access network, and
they deployed a consortium blockchain network that supports
hyperledger trading smart contract to ensure security and
transparency in resource trading between a single buyer and
multiple seller service providers.

As far as we know, no researcher has used DL methods to
dynamically adjust block size in the current research work.
However, throughput and latency are the most important
performance metrics in blockchain, which in turn is the most
important motivation for our work.

III. BPR SYSTEM MODEL

In this section, we will provide an overview of the proposed
system model and introduce the details of BPR from three
aspects: architecture design, reservation-based parking mode,
and vehicle parking behavior management based on reputation
mechanism.

A. Architecture Design

In BPR system architecture, there are mainly four types
of nodes: Certificate Authority (CA), Road Side Unit (RSU),
On-Board Unit (OBU), and Server, as shown in Fig. 1.

1) CA: CA certifies the validity of each node, issue, and
revoke certificates. Before each node joins the blockchain
network, it needs to register with the CA and obtain a
certificate.

2) RSU: RSU is responsible for communicating with vehi-
cles and servers, and transmitting parking requests and
results.

3) OBU: OBU (vehicle) is responsible for communicating
with RSU, initiating parking requests, and receiving park-
ing results. OBU play the role of a Client. In Hyperledger
Fabric, the Client can initiate transactions and invoke the
chaincode to query its own information, but it does not
need to participate in the maintenance of the blockchain
(e.g., sorting, verification, packaging).

4) Server: The server is responsible for communicating with
the RSU, receiving parking requests, and returning the
parking result according to the real-time parking situation
of the parking lot. As a full node, the server is responsible
for the ordering, packaging, and storage of ledgers in
the blockchain. In realistic scenarios, clusters of multiple
servers are often used to maintain the blockchain network.

Because the traditional public chain architecture requires
many nodes to participate, it not only requires nodes to
have sufficient computing power but also requires nodes to
have sufficient storage space. Considering the performance of
in-vehicle equipment and the impact of the number of nodes on
network performance, BPR uses the consortium chain as the
blockchain framework. Among the current consortium chain
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Fig. 1. BPR system model.
platforms, Hyperledger Fabric is one of the most popular plat- | 5a). Retum to parking result Send parking result

forms. Due to its channel, organization, and high throughput
characteristics, it is more suitable for parking lot problem
scenes.

To better record, the information on vehicle parking, ensure
the efficiency of vehicle parking, and prevent malicious
drivers from initiating unlimited reservations to occupy system
resources and deny their malicious behavior. We store the
information when the vehicle initiates a parking reservation
and the information when the vehicle ends parking as a
transaction in the block, the blockchain structure is shown
in Fig. 1. Drivers can use the reservation mode for parking,
or they can use the regular parking mode (i.e., arrive directly
at the parking lot to park, but this mode does not ensure the
availability of parking spaces). In BPR, the number of each
parking space is not limited. In practice, parking managers
can set the number of parking spaces according to the actual
demand, and maximize the parking efficiency.

In BPR, the specific process for the driver to complete
parking is shown in Fig. 2. All nodes in the blockchain need to
register with the CA, and then obtain a certificate. The driver

1a). Initiate a parking
request

2a). Send parking
request 3a), 2b). Check the
parking space, reserve a
parking space, initiate a
transaction proposal
and process it
6a), 4b). When the
vehicle leaves the
parking lot, initiate a
transaction proposal
and process it

Registration Issue a certificate

Registration Registration

Issue a certificate Issue a certificate

Registration Issue a certificate

1b). Initiate a
Car Device / parking request
Smart Phone

Send parking result

a) When the driver uses the OBU to make a parking reservation

b) When the driver uses a smart device to make a parking reservation

Fig. 2. A complete parking process in BPR.

can not only initiate a parking reservation request through the
OBU but also initiate the request through the in-vehicle device
or smartphone.
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1) When the driver uses the OBU to make a parking
reservation, a total of 6 steps are required. In step 1,
the OBU initiates a parking reservation request to the
RSU. In step 2, RSU forwards the request to the server.
In step 3, the server checks the parking space situation of
the parking lot currently, if there are remaining parking
spaces, it reserves a parking space for the vehicle, and
initiates and processes the requested information as a
transaction in the blockchain. In step 4, the server sends
the parking result to the RSU. In step 5, the RSU returns
the parking result to the OBU. In step 6, when the vehicle
leaves the parking lot, the parking lot will charge the
parking fee to the vehicle (no charge if the parking lot is
free), and the server will initiate and process the parking
information as a transaction in the blockchain.

2) When a driver uses a smart device to make a parking
reservation, it can be divided into 4 steps. In step 1, the
driver initiates a parking request to the server through
the smart device. In step 2, the server checks the parking
space situation of the parking lot currently, if there are
remaining parking spaces, it reserves a parking space
for the vehicle, and initiates and processes the requested
information as a transaction in the blockchain. In step 3,
the server sends the parking result to the smart device.
In step 4, when the vehicle leaves the parking lot, the
parking lot will charge the parking fee to the vehicle
(no charge if the parking lot is free), and the server
will initiate and process the parking information as a
transaction in the blockchain.

Because the server has sufficient computing power, the main
operations (e.g., transaction initiation, sorting, verification, and
packaging) in the blockchain are performed by the clusters of
multiple servers. With the development and popularization of
smart devices, more and more applications are being carried
on smart devices [44]. Therefore, in the future, researchers can
design some parking reservation applications and carry them
on smart devices.

B. Reservation-Based Parking Mode

In this part, we present a algorithm that simulate
and describe real-world driver for reserving parking: the
reservation-based parking mode. The notations used in this
section are illustrated in Table I.

Algorithm 1 is the pseudo-code of the reserved parking
mode algorithm. We divide the execution flow of Algorithm
1 into 3 steps, details are given as follows.

1) Initialize: Initialize the variables, as shown in lines 2-6

of the algorithm.

2) Choose a parking lot: Choose a parking lot that best suits
and make a reservation, as shown in lines 9-14 of the
algorithm.

3) Parking: Go to the parking lot of the choice and complete
the parking operation, as shown in lines 15-16 of the
algorithm.

Compared to the regular parking mode, the
reservation-based parking mode improves parking efficiency
in two aspects, and reduces the impact of finding parking
spaces on urban traffic congestion.
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TABLE I
LIST OF NOTATIONS
Notation Description
LoV = {Loncur, The location of the vehicle
LatCu'r}
Longur The current longitude of the vehicle
Latcy, The current latitude of the vehicle
PL={P1, .. The set of parking lots
P.}
P = {Lon, Lat} The parking lot in PL
Pn The nearest parking lot to the vehicle
Discur Distance between the LoV and the P
Rmax Maximum reservation distance
Save The average speed of the vehicle
T The time when the vehicle begins to parking
Tp The duration of the vehicle parking
T The time when the vehicle ends parking
R; The reputation value of node ¢
RI The initial R;
RS The success behaviors part of R;
RZE The failure behaviors part of R;
NS; The number of success behaviors of node %
NF; The number of failure behaviors of node ¢
NPF? The number of free parking spaces when
i node 7 performs the j;3 failure behavior
o’ The capacity of the parking lot when
i node 7 performs the j;; failure behavior
T The dura}ion of the j;p success behavior
i of node ¢
TR The time of the j;; failure behavior of
i node ¢ (duration of the reservation status)
TP The penalty suffered by node ¢ after
v conduct the j;5 failure behavior
PF, The penalty coefficient corresponding to

the j;p, failure behavior of node @

A The parking reservation restriction coefficient
B1, B2, B3 The penalty coefficient in different situations
w The number of consecutive N F;

1) The driver can check the parking space of each parking
lot at any time, and choose a target parking lot to reserve
parking, without having to reach the specific parking lot,
which reduces the time to find the parking spaces in the
parking lot one by one.

2) After the driver makes a parking space reservation in
a specific parking lot, the parking time starts to be
calculated, instead of starting to calculate the parking time
after arriving at the parking lot, which can improve the
utilization rate of the parking lot.

The time complexity of Algorithm 1 mainly depends on
two points: 1) The parking lot finding range set by the driver;
2) The number of qualified parking lots in that range. In reality,
drivers tend to look for closer parking lots rather than farther
ones, so the number of compliant parking lots will not be too
large. The time complexity of Algorithm 1 is O (n).

C. Vehicle Parking Behavior Management Based on
Reputation Mechanism

After enabling reserved parking, the driver’s parking effi-
ciency will be improved, and the traffic congestion on urban
roads will also be reduced, but many problems will also
accompany, the most important of which is malicious nodes
unrestricted parking space reservations may be made, but
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Algorithm 1 Reservation-Based Parking Mode

1: Input:

2: Latitude and longitude of vehicle position: LoV;
3: The set of parking lots: PL;

4: Parking start time: Tp;

5: Duration of vehicle parking: Tp;

6:

7:

8

9

The average speed of the vehicle: Sg;;
Procedures:

Discyr = Rpax

foreach(P : PL)

10: if Distance(LoV, P) < Disc,, then

11: Disc,, =Distance(LoV, P)

12: Py =P

13 end if

14 end foreach

15: Reserve a parking space and proceed to parking;

16: T =T+ Tp

parking is not performed, resulting in idle parking space
resources and waste of network computing resources.

Currently, some methods can be used to curb malicious
reservations.

1) Limiting the duration of the reservation status (e.g., the

reservation status only lasts 1 minute).

2) Limiting the number of reservations (e.g., only two
reservations per day).

However, these methods are not suitable for parking lot
scenes, because drivers often need to make parking reserva-
tions dozens of minutes in advance to enable them to have
enough time to get to the parking lot, and many drivers need
to park multiple times in a day. Aiming at the shortcomings
of the current method, we design a management mechanism
for vehicle reservation behavior based on reputation value.

The principles we consider mainly consist of 3 parts.

1) For honest nodes that occasionally fail to reserve parking
(e.g., occasionally canceling the parking, changing the
parking lot, and failing to arrive at the parking lot within
the specified time), the reputation value changes less.

2) For malicious nodes that frequently make reservations
and fail to park (e.g., make parking reservations contin-
uously or frequently, but rarely or never actually park in
the parking lot), their reputation value changes greatly.
And for such nodes, will be punished to prevent them
from making unlimited reservation behaviors.

3) Malicious nodes often begin to conduct malicious behav-
iors frequently after joining the network, instead of
performing malicious behaviors after a series of honest
behaviors (this is because it requires it to pay a significant
cost upfront before engaging in malicious behavior).

Especially in the parking lot that requires a fee, the driver
needs to pay some parking fees after every successful parking.
This also avoids the situation where honest nodes suddenly
turn into malicious nodes (frequent failure behaviors), because
this situation requires certain costs.

The symbols used in this part are shown in Table I.
The behavior of the node is divided into success behavior

IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, VOL. 24, NO. 3, MARCH 2023

(successful parking) and failure behavior (active cancellation
of reservation or reservation timeout). Therefore, take node i
as an example, R; is determined by three parts, which can be
expressed as

R = R/ + R® — Rf (1)

R; is affected by both RiI , Ris and RiF . Rl.l represents the
initial reputation value. Setting a reasonable RiI can effectively
prevent a vehicle from becoming a malicious node when it
cancels its reservation due to unforeseen circumstances when
it first uses the reservation for parking.

To manage nodes more efficiently, we divide them into two

categories.

1) Honest Node: For this type of node, even if it occasionally
conducts failure behavior, its reputation value will not be
greatly changed. The judgment standard is: the number
of consecutive failure behaviors < w, and R; > 0.

2) Malicious Node: For such nodes, the change in their rep-
utation value will be more drastic and will be penalized
by restricting reservations. The judgment standard is: the
number of consecutive failure behaviors > w, or R; < 0.

Rf is calculated from each success behavior and can be
expressed as

NS;

RS =>"TS! )
i=1

RiS is determined by the number of success parking of node i
and the length of each parking time (the unit is minutes). The
longer the parking time, the faster Rf will increase, which
also corresponds to the situation in the real scene (the longer
the parking time, the higher the cost). Once node i becomes
a malicious node, RiS will be reset to 0, and every time it
fails, it will cause RiS to be reset to O, until it performs the
success behavior or becomes an honest node, Rf will continue
increase.

RiF is calculated by each failure parking behavior of node i,
which can be expressed as

NF; . .
> j-TF/ - PF/, Malicious Node;
=1
R =4Ne )
> TF/-PF/,  Honest Node.

j=1

RiF is composed of multiple parts, including the number of
failure behaviors performed by node i, the reservation duration
corresponding to each failure behavior, and the penalty coef-
ficient corresponding to each failure behavior. Obviously, the
greater the number of failure behaviors, the greater j, which
will cause RiF to increase faster and faster.

In different parking situations, the penalty coefficient PFl.]
is different. Which can be expressed as

J
pr, if Ngfi <=0.1;
j_ ' j
PE =15, if0.1 < % <=0.5; )
3, otherwise.
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especially, malicious behavior during peak hours (when there
are fewer parking spaces) is a worse situation. Therefore,
we can set different parameters, and effectively prevent mali-
cious behavior from occurring during peak hours.

The unlimited reservation of parking by nodes will waste
parking space resources and network resources. We will
restrict the function of parking reservations based on the
node’s reputation value to prevent this from happening. T P;
is the duration for which node i is restricted from using the
parking reservation, which can be expressed as

R; . )
e =17 Malicious Node; )
0,  Honest Node.

A is the restriction coefficient of parking reservation. For
example, when RiF is 1000, if we set A to 20, then node i
will not be able to use the parking reservation within 50 sec-
onds. Therefore, by adjusting A, malicious reservations can be
effectively curbed.

All in all, in this reputation mechanism, nodes that fre-
quently conduct malicious behaviors will be punished more
and more severely. This reputation mechanism can effectively
curb the occurrence of malicious reservations while ensuring
that honest nodes use parking reservations.

IV. DYNAMIC ADJUSTMENT METHOD OF BLOCK SIZE

In this part, we dynamically adjust the block size based
on DL methods to balance the performance (throughput and
latency) of the blockchain.

A. The Prediction of Transaction Arrival Rate

First of all, we predict the number of short-term transaction
arrival rate in the blockchain based on Long Short-Term
Memory (LSTM) [45]. Then we model the effect of transaction
arrival rate, block size on latency, and throughput respectively
based on Multilayer Perceptron (MLP). Finally, we set a
custom score function as an evaluation metric to trade off
latency and throughput. In practice, we can dynamically adjust
the block size according to the changing number of transaction
arrival rate to achieve the best evaluation metric, and the
scoring function can be also adjusted according to actual
performance needs.

Predicting the number of short-term transaction arrival rate
in the parking lot is a typical time-series forecasting problem
which is to predict the most likely number of transaction
arrival rate in the next P time steps given the previous T
observations, which can be expressed as

., Xpp = argmax log P(x;41, Xi4p|
Xt41se0s Xt 4P

Xi41s -

X)) (6)

where x; is the number of transaction arrival rate at time step .
In this work, we employ 60 minutes as the historical time
window, also known as 12 observed data points (T = 12)
are used to forecast the transaction arrival rate in the next
5 minutes (P = 1). We set the frequency of prediction to
5 minutes. This is because if the frequency is too low, it will

Xt—T+15 - -
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Fig. 3. LSTM cell architecture.

lead to frequent predictions, which will reduce the prediction
effect (and the block size adjustment effect), while too high
a frequency will lead to untimely predictions, which will lose
the meaning of block size adjustment.

LSTM employs a gating mechanism to save and transmit
information, so that it can effectively model long-time series,
which is currently the most commonly used method for time
series forecasting problems. The internal gating mechanism of
each LSTM neuron has a forget gate F, an input gate I, and an
output gate O, as is shown in Fig. 3. The input gate retains the
current input at a certain proportion. The forget gate controls
the ratio of the information transmitted from the upper neuron
to the current neuron. The output gate selectively outputs the
information contained in the cell. The updated formulas for
LSTM neurons are expressed as

I, =0 (X Wyi +H;—1 Wy +b;)
Fi=0 (X, Wir +Hi—1 Wiy +bf)
O =0 (X Wyo+H—1 Wpo + Do)
C; = tanh (X; Wye +H;_1 Wy +b,)
C=F0oC.i+LoC

H; = O; © tanh (C;)

@)

Note that we should use a fully connected layer to map the
hidden state H; to the final predicted output X,, which can
be expressed as

Xt+1 =H; Wy +by (8)

B. The Blockchain Performance Scoring Model

We model the impact of arrival rate and block size on
blockchain performance via MLP which is shown in Fig. 4.
The input layer is composed of two features, arrival rate and
block size. These features are mapped to the output layer after
passing through multiple hidden layers. The ground truth of
the output layer is either latency or throughput so we need to
train two MLP models separately. As an example, the MLP
formula with only one hidden layer can be expressed as

©)

H=0 (XWO +b0)
0 =HW®? +p@
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Fig. 4. Multilayer perceptron neural network structure.

where X and H denote the input features and output hidden
state, W, W@ M and b@ are learnable parameters, o
denotes the sigmoid activation, O represents the output of
MLP.

Finally, we get different latency and throughput pairs by
feeding the predicted number of transaction arrival rate at the
next time step together with different block sizes into the above
trained MLP model. To determine the optimal block size at
the next time step, we define a score function that can be
expressed as

score = a - SCOrejgrency + f - SCOT €throughput (10)

where scorejgrency and scoreiproughpur are the score of
latency, and the socre of throughput, respectively, a (0, 1)
is the weight factor for latency, f = 1 — —a, and which is
the weight factor for throughput. In practical scenes, the two
weights can be adjusted as needed.

SCOTrejatency can be expressed as

latency — latencymax

Y

SCorejatency =
latencymin — latencymax

where latency represents the latency corresponding to a

certain block size, latency;,q represents the maximum value

of the latency corresponding to the size of all optional blocks,

and latencyyin, represents the minimum value of the latency

corresponding to the size of all optional blocks.
scoreproughpur can be expressed as

throughput — throughputyin

(12)

SCOr€throughput =
ghpu throughputyax —

throughputy,in
where throughput represents the throughput corresponding to
a certain block size, throughput,;, represents the minimum
value of the throughput corresponding to the size of all
optional blocks, and throughput,,,, represents the maximum
value of the throughput corresponding to the size of all
optional blocks.

The block size corresponding to the highest score is the opti-
mal block size corresponding to the next time slice. The
specific process is shown in Algorithm 2. We divide the
execution flow of Algorithm 2 into 3 steps, details are given
as follows.

1) Predict the transaction arrival rate: Predict the transaction

arrival rate after 5 minutes based on the previous trans-
action arrival rate, as shown in line 10 of the algorithm.
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Algorithm 2 Dynamic Adjustment Method of Block Size

1: Input:

2: The transaction arrival rate of last 7 = 12 time steps: X7 =
B R O P2

3: The trained LSTM model for predicting transaction arrival
rate Xp = {X;+1,...,X;4+p} in the next P = 1 time steps:
LSTM;

4: The trained MLP model for predicting latency: MLPy;

5: The trained MLP model for predicting throughput: MLP5;

6: The set of block sizes that can be selected: Bs =
{B1,..., By}

7: The weight of the throughput score: «;

8: The weight of the latency score: £.

9: Procedures:

10: Xp =LSTM(X7)

11: scorepesy = 0

12: foreach (B : BYS)

13: scorejgrency = MLPy (Xp, B)

14: SCOY€throughtput = MLP; (Xp, B)
15: sCore = o - SCOrejgrency + f - SCOT €throughpur
16: if score > scorepes; then

17: SCOT €pest = SCOTE

18: Bpes: = B

19: end if

20: end foreach

21: Resize the block size to Bpest;

22: end

2) Calculate the score: Based on the trained blockchain
performance model, the performance of each block size
is scored and the optimal block size is selected, as shown
in lines 11-19 of the algorithm.

3) Adjust block size: The block size is adjusted to the
optimal block size, as shown in line 21 of the algorithm.

The time complexity of Algorithm 2 mainly depends on two

parts.

1) The training time complexity of LSTM. As shown in
Eq. (7), since the LSTM unit contains 4 sets of parameters
corresponding to the input gate, output gate, forget gate
and candidate states. In addition, the parameters W and b
contained in the fully connected layer as shown in Eq. (8)
are also considered. In summary, the complexity of this
part is O(4(n xm +n*> +n) + (n + 1)) = O(n?), where
n is the hidden size, and m is the input size = 1.

2) The time complexity of the scoring model. As shown in
Eq. (9), the MLP network contains parameters W and
b related to the input size, the number of layers in the
hidden layer (set to 2 in this paper), the number of cells
in the hidden layer and the output size. In summary, the
complexity of this partis O(N*x2x(p*i+i+i*j+j+j*
qg+¢q)) = O(N *xi=*j), where N is the number of block
size sets, p is input size = 2, ¢ is output size = 1, i and
Jj are the number of cells in the first hidden layer and the
number of cells in the second hidden layer, respectively.

In summary, the time complexity of Algorithm 2 is O (n* +

N xix*j).
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Fig. 5. This prototype system for parking reservations.

V. DEPLOYMENT

We deploy Hyperledger Fabric 2.3 on MacBook Pro (64-bit
Apple M1 Pro chip and 16GB RAM), and we also deploy a
Linux virtual machine on the Macbook Pro with 2 processors
and 4GB RAM and installed the ubuntu 20.04 operation
system.

Hyperledger Fabric is one of the most popular consortium
chain platforms. The transaction throughput of Hyperledger
Fabric is several times that of Bitcoin and Ethereum [46],
and it has a higher degree of flexibility. Therefore, it is more
suitable for high-throughput parking scenes.

We set up 3 Orderer nodes and 5 Peer nodes on Linux virtual
machine. In Hyperledger, the Orderer node is responsible for
sorting transactions in the network over some time to ensure
the order of transactions, and the Peer nodes are responsible
for verifying the correctness of transactions and storing the
ledger of the blockchain. We set the number of both types
of nodes to be odd, which can ensure the stability of the
blockchain system as much as possible.

We also implement a prototype system for parking reserva-
tions, as shown in Fig. 5, which will be the subject of further
research in the future.

VI. EVALUATION AND ANALYSIS

In this section, we evaluate the efficiency of the
reservation-based parking mode, the impact of the parking
behavior management based on reputation value, and the
performance of the dynamic adjustment of block size based on
DL methods. In additional, We will also conduct a qualitative
analysis of related work.

We use a workstation (64-bit Intel Core i7-11700 2.5GHz
CPU, NVIDIA Geforce RTX 3070 GPU, 16GB RAM, and a
Windows operating system) to finish the experiment, evaluate
and analyze it. The integrated development environment (IDE)
is Pycharm, the programming language version is Python 3.6,
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TABLE 11
PARAMETER SETTINGS OF RESERVATION-BASED PARKING MODE
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Fig. 6. The transaction arrival rate of reservation-based parking mode.

and the DL framework is PyTorch 1.7.1. These specific
experimental details will be described in detail subsequently.

A. The Efficiency of Reservation-Based Parking Mode

To verify the efficiency of the reservation-based parking
mode, we use the Algorithm 1 to conduct simulation exper-
iments on real dataset to obtain the result of the transaction
arrival rate. In additional, we compare and analyze the time
efficiency of the reservation-based parking mode and the
regular mode.

We use 1 real-world dataset (Uber Pickups in New York
City,1 this dataset contains data on NYC Uber taxis in 2014).
This real-world dataset is preprocessed using the following
steps:

1) We treat each request in this dataset as a parking request
and randomly scale it up by a factor of 100 (in reality, this
number is probably still smaller than the actual situation
in New York City).

2) According to a report given by the City of New York,
there are between three and five million parking spaces
in the city [47]. Therefore, we set up 4 million parking
spaces (simulate a shortage of parking spaces), and to
avoid as much complexity as possible, we spread them
evenly over 1,600 parking lots.

3) We distribute the 1600 parking lots equally according to
the location distribution (the range of latitude is [40.64,
40.84] and the range of longitude is [-74.03, -73.83]) of
this dataset.

We simulate parking according to the steps in Algorithm I
for every parking request in this dataset. The experimental
parameter settings are shown in Table II.

The experimental results are shown in Fig. 6. Our proposed
reservation-based parking algorithm can efficiently process

1 https://www.kaggle.com/fivethirtyeight/uber-pickups-in-new-york-
city?select=uber-raw-data-sep14.csv
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TABLE III
PARAMETER SETTINGS OF REPUTATION MECHANISM

Parameter Value
RI 100
TS [60, 180] minutes
TF [1, 30] minutes
C 1250
w 5
B1, B2, B3 52,1
A -20

parking requests and complete simulated parking. Correspond-
ing to the real-world parking situation, the transaction arrival
rate reaches the peak of the day during both the evening peaks.

Compared with the regular parking mode, the reservation
parking mode can save more time in finding a parking space.
This is because drivers can choose their desired parking lot
(parking space) and parking through the App and other means,
instead of blindly searching for it after arriving at the parking
lot (especially during the peak hours when such a search is
likely to be pointless).

B. The Effect of Reservation Parking Behavior Management
Based on Reputation Mechanism

In this part, the experimental parameters are shown in
Table III, and we set different parameters to further demon-
strate the effect of the proposed reputation mechanism.
We conduct simulation experiments on the following three
situations:

1) The Change in Reputation Value of Honest Nodes When
They Perform Occasional Failure Behaviors: The experimen-
tal results are shown in Fig. 7(a). When node i performs the
failure behavior for the first time, Cl.1 is 798 and TFl.1 is ‘14.
Therefore, from Eq. (3) and Eq. (4), it follows that PFl.] is
1 and RI.F is 14. When node i performs the second failure
behavior, C? is 1137 and TF? is 3, so PF? is 1 and Rf is
17 (14 + 1 * 3).

For honest nodes, their occasional conduct of failure does
not have a significant impact on the reputation value and is
not subject to the penalty of being restricted from parking
reservation. Taking node i as an example, it can be known
from Eq. (3) that the weights of success and failure behaviors
performed by node i are the same, so the reputation value of
node i is more stable when the number of failure behaviors
of node i is less than its number of success behaviors (unless
its number of consecutive failure behaviors is greater than or
equal to w).

2) The Change of Reputation Value When a Malicious Node
Performs Frequent Failure Behaviors: As shown in Fig. 7(b).
When node i performs the 4'h malicious behavior, Rf is 229,
then R; is -129. From Eq. (5), node i will be restricted to
reserve 6.45 (-129 / -20) seconds. When node i performs the
20" malicious behavior, RiF is 15832, then R; is -15732,
and from Eq. (5), node i will be restricted to reserve for
786.6 seconds.

For a malicious node, its reputation value will be affected
more and more obvious when it performs frequent failure
behaviors, and it will be severely punished at the same time.
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Fig. 7. The change of reputation value.

Taking node i as an example, from Eq. (3) and Eq. (5),
we can know that the weight of failure behavior performed by
malicious node i is much greater than that of success behavior.
Therefore, once node i becomes a malicious node, it will be
difficult to recover back to an honest node (unless it performs
multiple success behaviors in a row).

3) The Change of Reputation Value When an Honest Node
Suddenly Turns Into a Malicious Node: As shown in Fig. 7(c).
After node i performs a large number of success behaviors,
it starts to perform malicious behaviors. After node i performs
the 5" malicious behavior, even though R; is still greater
than 0, Ris is reset to 0 because the number of consecutive
failure behaviors of node i reaches w, while it will be penalized
by being restricted from making reservations. When node i
performs the 5'" malicious behavior, R; is —67, so it is
restricted to reserve for 3.35 (—67 / —20) seconds. When
node i performs the 15" malicious behavior, R; is -15597,
so it is restricted to reserve for 779.85 seconds.
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For an honest node, when it suddenly performs malicious
behaviors frequently (when the number of consecutive failure
behaviors reachs w), it will be quickly regarded as a malicious
node (even if its reputation value is very high), and at the
same time it will be severely punished. Which can effectively
prevent the extreme case of an honest node suddenly becomes
a malicious node.

Therefore, our proposed reputation mechanism can effec-
tively curb the malicious reservation behavior while avoiding
affecting the vehicles with normal reservations. By considering
various situations, the reputation model has better feasibility
and applicability.

C. The Performance of Block Size Dynamic Adjustment

In this part, we complete the following 3 experiments.

1) Prediction of Short-Term Transaction Sending Rate
Based on LSTM, LSTM (w/o Bidirection), ARIMA, and SVR:
We calculate the transaction arrival rate per minute by con-
ducting experiments using the previously mentioned dataset
expanded by a factor of 100. We aggregate the original
1-minute interval data into 5-minute intervals, thus containing
288 records per day for a total of 8640 records. In addition,
the input data is mapped between [0, 1] using min-max
normalization. We use 70% of the data for training, 20% of
the data for testing, and the remaining 10% of the data for
validating.

We take the mean squared error (MSE) as the loss func-
tion of our model for training. We adapt the commonly
used mean absolute error (MAE), mean absolute percentage
error (MAPE) and root mean square error (RMSE) as evalu-
ation metrics for regression prediction.

We perform a grid search strategy on the validation set to
locate the best hyperparameters. We use the Adam optimizer
for training. The learning rate is set to 0.001. The hidden state
dimension of LSTM is set to 128, and the hidden layer is set
to 2 layers. The batch size is set to 64. Early stopping is used
to avoid overfitting. As mentioned earlier, we use 60 minutes
as the historical time window, that is, 12 observed data points
(T = 12) to predict the transaction arrival rate of the parking
lot for the next 5 minutes (P = 1).

To show the effectiveness of LSTM, we compare LSTM
with the following 3 models. ARIMA: Auto-Regressive

The prediction of transaction arrival rate based on LSTM, LSTM (w/o Bidirection), ARIMA, and SVR.
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TABLE IV
EXPERIMENT RESULTS
Model MAE RMSE MAPE (%)
ARIMA 3831.86 15381.00 22.96
SVR 1934.40 2580.11 10.07
LSTM (w / o bidirectional) 1793.55 2327.17 8.93
LSTM 1747.98 2260.08 8.99

Note: LSTM (i.e., LSTM Univariate, in this paper, we only use transaction
arrival rate as variable.)

Integrated Moving Average Model, which is a statistical time
series prediction classical model; Support Vector Regression
(SVR): SVR is another classical time series prediction model
which uses linear support vector machine for the regression
task; LSTM (w / o bidirection): LSTM network without
bidirection.

Table IV compares the prediction performance of LSTM
with 3 different models. LSTM achieves the minimum pre-
diction error, because compared with the statistical prediction
model and the traditional machine learning model, LSTM
can effectively capture short-term and long-term temporal
dependencies.

To better demonstrate the superiority of LSTM based trans-
action arrival rate prediction model, we visually compare the
prediction results of LSTM and the above three models. The
experimental results are shown in Fig. 8. Fig. 8. (a) shows
the visualization of the prediction results and ground truth for
1 days in September 25. Fig. 8. (b) shows the visualization of
the prediction results and ground truth for 6 days from Septem-
ber 25 to September 30. We have the following observations.
First, As indicated by the red arrow in Fig. 8. (b), extreme
outliers will appear in ARIMA prediction results, which indi-
cates the unreliability of ARIMA model. Moreover, ARIMA
prediction results fluctuate greatly, which also indicates the
instability of ARIMA. Second, compared with the traditional
machine learning model SVR, the LSTM prediction results fit
the ground truth better. Third, when there is a small fluctuation
in the transaction arrival rate, the prediction value generated
by the LSTM model is smoother, which reflects the robustness
of the model. Forth, the prediction results of the model are
also accurate for sharp changes in the transaction arrival rate,
which reflects the flexibility of the LSTM model.
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Fig. 9. The prediction effect of blockchain performance prediction model.

2) Modeling the Impact of Transaction Arrival Rate and
Block Size on Blockchain Performance Based on MLP: We
set the transaction arrival rate from 10 to 200 with an interval
of 5, and block sizes from 10 to 800 for each transaction
arrival rate above, with an interval of 10. According to the
above settings for the transaction arrival rate and block size,
we obtain the corresponding delay and throughput through the
performance test of the blockchain, thus obtaining 3120 pieces
of data. In addition, transaction arrival rate and block size are
mapped between [0, 1] using min-max normalization. We use
80% of the data for training, and 20% of the data for testing.

We use MLP to perform the training of the blockchain
performance model. In which we use early stop to determine
the number of epochs for model training. When the number
of epochs is 5000, the loss function of the model almost stops
decreasing and the model can be trained in roughly 5 minutes.

We take MSE as the loss function of our model for
training. We adapt the commonly used MAE, MAPE, RMSE
as evaluation metric for the regression prediction.

In both MLPs trained separately for latency and throughput,
we use the Adam optimizer. The learning rate is set to 0.001.
The hidden layer is set to 2 layers. The dimension of the first
hidden layer is set to 64, and the dimension of the second
hidden layer is set to 8. The batch size is set to 32. dropout
is used to avoid overfitting. The experimental results of our
trained blockchain performance model are shown in Table V.

Fig. 9. shows a visualization of the prediction results and
ground truth of the blockchain performance prediction model
on the test set. Among them, Fig. 9. (a)-(d) is the prediction
of latency, and Fig. 9. (e)-(h) is the prediction of throughput.
We have the following observation that given the inputs of
transaction arrival rate and block size, the blockchain perfor-
mance prediction model can predict latency and throughput
with quite accuracy.

3) Performance of DL-Based Dynamic Block Size Adjust-
ment Method: The experimental results are shown in Fig. 10.
Depending on the arrival rate of transactions at different times
(basically equivalent to parking traffic), different block sizes
correspond to very different scores. In some periods, there
are even significant differences, for example, at 1:00 a.m.

0.0 192.7 703 100.0 184.1
Transa

150.0
Arrival Rate (TPS)

(h) Block size = 800.

100.0 15
Transaction Arrival Rate (TPS)

(g) Block size = 600.

on September 26 in Fig. 10 (c), the block size of 400 cor-
responds to a score of 0.2, while the dynamically selected
optimal block size of 10 corresponds to a score of 0.99.
Setting different block sizes will have a significant impact on
the performance of the blockchain, which also illustrates the
necessity of choosing the optimal block size.

We set different weights to accurately evaluate the effec-
tiveness of our proposed method. Obviously, our method can
select the optimal block size based on the real-time transaction
arrival rate compared to a fixed block size, resulting in
real-time optimal blockchain performance.

The difference in weights will significantly affect the
blockchain performance scores. In some latency-sensitive sce-
narios (e.g., banking transactions), latency is more important
compared to throughput, while in some throughput-sensitive
scenarios (e.g., online shopping sites), the opposite is true.
Therefore, in real scenes, the weights need to be set according
to the actual needs.

We also select 3 related work to further illustrate the
effectiveness and scalability of our proposed method. The
experimental parameters of these 3 related work are shown
in Table V. To ensure the experimental environment is as
uniform and fair as possible (even so, the differences caused by
the computational performance of the devices still cannot be
excluded), we re-perform the blockchain performance exper-
iments and train the new blockchain performance models in
our local environment according to the parameters they set.
The accuracy of these three blockchain performance models
is still measured using MAE, RMSE and MAPE. The training
results are shown in Table V.

The experimental results are shown in Fig. 11, to ensure the
fairness of the experiment, we set the collection of selectable
block size all to [10, 20, ..., 200] (even though some block size
may achieve better performance, as in Fig. 10). Our method
can effectively improve their blockchain performance based
on the 3 related work. As shown in Fig. 11 (a), we set a to
0.9 and g to 0.1 (with latency as the main weight), and the
dynamically chosen block size can make the latency reach
the optimal value, in most cases, the chosen block size has
the lowest latency (all cases if we set a to 1, and S to 0).
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Fig. 10. Dynamically selected optimal block size by score model.
TABLE V

EXPERIMENT RESULTS

Blockchain Endorsement Transaction Block
Work Platform Orderers Peers Policies Arrival Rate Size Model MAE RMSE MAPE (%)
. MLP; 0.139 0.286 12.99
[30], 2021  Hyperledger Fabric 3 4 OR [10, 20, ..., 200]  [10, 20, ..., 200] MLP, 4226 6360 5.298
. MLP; 0.104 0.168 10.66
[48], 2022  Hyperledger Fabric 1 4 OR [10, 20, ..., 200] [10, 20, ..., 200] MLP, 4339 5008 6.390
. MLP; 0.116 0.253 11.18
[49], 2021 Hyperledger Fabric 1 4 AND [10, 20, ..., 200] [10, 20, ..., 200] MLP, 6.896 9158 177
. MLP; 0.087 0.149 6.918
Ours Hyperledger Fabric 3 5 MAJORITY [10, 15, ..., 200] [10, 20, ..., 800] MLP, 3.450 4971 4018
L0 e %
e . 1208
r T PO 180 180

Fig.

11.
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Transaction Arival Rate (TPS)

(b) a = 0.1, 8 = 0.9 (throughput is the main indicator).

100 120
Transaction Arival Rate (TPS)

(a) @ =0.9, g =0.1 (latency is the main indicator).

The optimization effect of the proposed block size dynamic adjustment method.

As shown in Fig. 11 (b), we set a to 0.1 and f to 0.9 (with block size enables the throughput to reach the optimal value,
throughput as the main weight), and the dynamically chosen in all cases, the chosen block size has the highest throughput.
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TABLE VI
THE COMPARISONS WITH RELATED WORK

Works Based- Blockchain Parking Reputation Blockchain Securit
Blockchain Platform Reservation | Mechanism Performance y

[33], 2019 v Ethereum - - Low v
[34], 2020 v Hyperledger Fabric - - High v
[35], 2020 v - - - High v
[18], 2021 - - v - - v
[50], 2022 - - v - - -

Ours v Hyperledger Fabric v v High and dynamic optimization v

Note: vis “Yes” (related to this content), - is “No” (not related to this content or can not be realized).

The experimental results show that the block size will
have a significant impact on the blockchain performance,
which is accompanied by a certain pattern as the block size
changes. In conclusion, in a practical scenario, the main-
tainer of the blockchain can further adjust the values of the
two weights according to realistic needs (e.g., when only
throughput needs to be considered, o can be set to 0 and
pto1).

This dataset® for this subsection we have open sourced on
Kaggle, and the code for this subsection we have open sourced
on GitHub. Researchers can conduct further studies with the
dataset and the code® we provide.

D. System Analysis

We compare the proposed scheme with related work and
perform a qualitative analysis to illustrate the innovation of
our work.

We choose 5 related work, analyze and compare them from
multiple aspects, as shown in Table VI. [33] presented a frame-
work for a blockchain-based parking management system that
aims to protect the privacy of users, but they used Ethereum
as the blockchain platform and were, therefore, less efficient.
Both [34] and [35] proposed specific parking framework, their
efforts are focused on the sharing of private parking spaces.
However, they did not take into account the research work
on parking reservations as well as reputation mechanisms.
[18] presented a learning automata and reservation-based smart
parking system. Finally, [50] presented an efficient parking
reservation framework that accurately predicts parking loads
and effectively relieves parking loads in parking lots. However,
they did not consider the case of malicious reservations or the
security of the system.

In short, compared to the existing research work, our
proposed work focuses on the overall solution of the parking
reservation system and we consider the parking efficiency,
malicious reservations, system efficiency, and security. Such a
holistic solution is not yet considered in other current efforts,
so our work can be used in other similar scenes.

In particular, to the best of our knowledge, our proposed
deep learning-based method for dynamic block size adjust-
ment, is the first of its kind. This method can be used in many
blockchain performance-sensitive scenes.

2https://www‘kaggle.com/datasets/loveffc/blockchain—performance
3https://github.com/JiShuWang/BPR

VII. CONCLUSION

In this work, to improve the efficiency of parking and the
security of the parking system, we propose a blockchain-based
reserved parking scheme. The reputation mechanism pro-
posed by us can effectively curb the occurrence of malicious
reservation behavior and ensure the efficiency of reserved
parking. Our proposed DL-based dynamic block size adjust-
ment method and scoring model realize the selection of the
optimal block size. Many experiments and evaluation results
show that the system has good performance. Our proposed
block size dynamic adjustment method is applicable not only
to Hyperledger Fabric but also to mainstream blockchain
platforms, especially for blockchain performance-sensitive
scenarios. In conclusion, our work is not only applicable to the
parking lot scene, but also to many similar scenarios. However,
our proposed scheme has some shortcomings, including the
development of a parking reservation system that is still in
the prototype stage.

In future work, we will further investigate the blockchain
performance model and parking reservation system. First
of all, more factors affecting blockchain performance
(e.g., endorsement strategy, number of nodes, block batch
processing time, transaction size) will be considered and deep
learning models with better results will be selected for training
to further improve the accuracy and robustness of blockchain
performance models. Secondly, we will use Markov model
and game theory to explore and study the parking model
more deeply and scientifically, with a view to establishing a
systematic model that affects drivers’ parking decisions.
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