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a b s t r a c t

The rapid development in knowledge graph (KG) technology and its popularity in the field of artificial
intelligence (AI) have significantly increased the support for similar KG-based applications. However,
there is a concerning problem regarding KGs; most of them are often incomplete. This motivated us
to study knowledge graph completion (KGC). Some recent studies have used graph neural networks
(GNN) such as graph convolutional networks (GCN) to model graph-structured data, providing good
results on KGC tasks. However, the edge weights in GCN models are controlled by degree, a measure
that moderately ignores the differences among relation information. To address the above limitations
and obtain better KGC, we propose a model based on graph attention networks (GATs) and contrastive
learning (CL), called the CLGAT-KGC model. This model introduces the graph attention mechanism and
adds different representations of entities under the same entity corresponding to different relations to
enhance the entity-relation message function. Additionally, a new CL method is proposed under the
CLGAT-KGC model to better learn the embedding of entities and relations in the KG domain. We have
completely verified the effectiveness of this model through extensive experiments.

© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

With the gradual popularization of the Internet and emer-
ence of various new applications, plentiful data resources have
een generated; and the problem of organizing and express-
ng the useful data sources from these has attracted the atten-
ion of many researchers. Thus, Google proposed the concept of
nowledge graph (KGs) [1] and KG technology has gained great
ttention in recent years. To put it simply, a KG is a directed

Abbreviations: AI, Artificial intelligence; KG, Knowledge graph; KGC,
Knowledge graph completion; GAT, Graph attention network; CL, Contrastive
learning; CLGAT-KGC, Contrastive learning graph attention network-knowledge
graph completion; GNN, Graph neural network; GCN, Graph convolutional
network; YAGO, Yet Another Great Ontology; NELL, Never-Ending Language
Learning; KGE, Knowledge graph embedding; NTN, Neural tensor network;
r-GCN, Relational graph convolutional network; SACN, Searching architecture
calibration network; CompGCN, Composition-based multi-relational graph
convolutional network; MRR, Mean reciprocal rank; MR, Mean rank; A2N,
Attention in attention; MRGAT, Multi-relational graph attention network;
HRAN, Hierarchical residual attention network; LTE, Linearly-transformed
entity embedding; DeepER, Deep Entity Resolution
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graph with entities as nodes and relations as edges. KGs model
real-world information in the form of triples. Each triple can be
expressed as (head entity, relation, tail entity) or (h, r, t), where
, r, and t correspond to the head entity, relation, and tail entity,
espectively, e.g., (The Great Wall, IsLocatedIn, China).

KGs extract, organize, and manage knowledge from many data
esources to provide users with intelligent services that can meet
heir needs, which includes understanding semantic search and
roviding more accurate search answers or appropriate recom-
endation services. There are many KGs; the representative ones
re KnowItAll [2], Yet Another Great Ontology (YAGO) [3,4], DB-
edia [5], Freebase [6], Never-Ending Language Learning (NELL)
7], and Probase [8]. Even widely-used KGs such as these are still
ar from being complete and comprehensive. The incompleteness
f KGs greatly affects their quality, hindering KG support for
rtificial intelligence (AI)-related applications. Thus, knowledge
raph completion (KGC), also known as the link prediction task,
as become deeply important in KG research. The core of KGC
nvolves logically understanding KGs, with the main aim of pre-
icting the missing elements in the triples. More formally, the
oal of KGC is predicting the head entity (?, r, t) or tail entity
h, r, ?) in a given query.

Currently, any advanced inference models are based on em-
edding approaches. Knowledge graph embedding (KGE) models

https://doi.org/10.1016/j.knosys.2022.109889
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
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re generally classified into four categories [1]: linear/bilinear
odels (TransE [9], DistMult [10], Complex [11], HolE [12], RotatE

13]); factorization models (TuckER [14], LowFER [15]), neural
etwork models (neural tensor network (NTN) [16], ConvE [17],
onvKB [18]); and ontology models (TransO) [19]. Typically, these
odels embed entities and relations into a low-dimensional dis-

ributed representation based on existing triples in KGs. Entity
nd relational embeddings are obtained by optimizing the scoring
unction defined on each fact triple (h, r, t) to measure the
lausibility of the embedding. Nevertheless, most of these em-
edding models only study the triadic information in isolation,
gnoring the valuable information that is embedded and available
n the whole KG. The largest typical drawback of these embedding
odels is that they do not fully exploit the rich neighborhood
tructure of each entity and the additional information that may
e hidden in the KG. This limits both the inference capability and
nterpretability of the embedding space. Additionally, we should
onsider that the locations of these models in the embedding
pace are not fixed in the entity representation – the locations
ave been called ‘‘uncontrollable’’– and this can lead to similar
r dissimilar entities with similar embedding locations incor-
ectly becoming the correct inference when we make inference
redictions; this seriously limits the inference and its effect.
Motivated to solve these issues, we made full use of the

omain information of each entity and the most representa-
ive transfer information. Regarding neighborhood learning, using
raph neural networks (GNNs) [20–22] is the most ideal choice,
ith their excellent performance in representing the neighbor-
ood information from a given node. These networks are widely
sed in computer vision, natural language processing, and knowl-
dge tracking [23]. The edge weights in common graph convolu-
ional network (GCN)-based models [20] are only controlled by
egree, moderately ignoring the difference between each piece
f relational information.
The following relations are shown in Fig. 1: (Lionel Messi,

lays forward for, Paris Saint-Germain); (Kylian Mbappé, plays
orward for, Paris Saint-Germain); and (Ángel Di María, plays
orward for, Paris Saint-Germain). Three players simultaneously
lay for the same club, but each player is not necessarily equally
mportant for the club; so, they should have different weights
hen representing the entities and relations. Based on this and
raph attention networks (GATs) [21], we have introduced a
raph attention mechanism. In Fig. 1, there may be multiple
elations between the entities. For example, between the entities
ionel Messi and Argentina, there are multiple relations such
s plays forward in, born in, and be captain. In this case, when
ink prediction is performed under the traditional KGC model,
hich is based on GNNs, it is often affected by the noise of these
ultiple relations. Inspired to solve this problem and based on

he working of CoPER [24], we propose a relation-enhanced entity
epresentation method, which can enhance the representation
f entities under different relations. We wanted the embedding
epresentation of each entity to be slightly different when the
ame entity was linked to different relations. Accordingly, we pro-
ose a method for augmenting the message function to enhance
he different representations of entities under multiple relations.
ere, unlike how it is represented in the traditional GCN model,
ot only a fixed matrix is used to obtain messages. Specifically,
n addition to the weight matrix shared across different relations,
e separately learned a specific weight matrix for each relation
o enhance the representation of entities for different relational
inks.

A recent paper [25] has stated, ‘‘The transformation of entity
epresentations can effectively improve the performance of KGE
odels as long as the GCN can distinguish entities with different
emantics through the entity representations it generates’’. Cer-
ain KGC methods have not been able to fully tap the potential
2

of contrastive learning (CL). Thus, we thought of introducing CL
into the field of KGC to provide KGC tasks with a more powerful
knowledge representation capability. Specifically, we used CL to
augment the representations of entities and relations. Inspired
by CL methods in the computer vision domain, such as Sim-
Siam [26]; MoCo [27]; SimCLR [28]; the recommender system
domain [29–31]; and the natural language processing domain
[32–34]; we propose two node-level CL methods to aggregate
and model rich neighborhood information to improve entity and
relation representation learning. Unlike traditional graph aug-
mentation types that involve the random sampling of nodes to
the graph or the construction of augmented graph CL by de-
stroying subgraphs, we preferred to mine potential neighborhood
relations from node-level contrast representation to enhance the
learning ability of the node representation. The first contrast
representation aimed to extract entity nodes as well as represen-
tations of relations and their hierarchical neighbor embeddings
for contrast. The second contrast representation was based on
the potential semantic relations of nodes – which may not be
reachable on the graph but have some similar semantics – that
were to be compared to capture the correlation between entity
node representations and their corresponding prototype embed-
dings. These two contrast representations were used to improve
the representation of entity node embeddings with relational
embeddings. Although distance-based KGE models can achieve
a better performance in link prediction, most only model ei-
ther connection patterns or relation mapping properties and not
both. For example, RotatE [11] is good at modeling connection
patterns but weak at modeling the mapping properties of re-
lations; and it cannot handle knowledge representation under
more relations. Composition-based multi-relational graph con-
volutional network (CompGCN), like the GCN-based model, only
relies on the degree of nodes to judge its importance; lacks the
ability to handle multiple relations; and does not have a bet-
ter representation for distinguishing entities and relations. Also,
our experimental results showed that our proposed contrastive
learning graph attention network-knowledge graph completion
(CLGAT-KGC) model performed more comprehensively on both
datasets than other existing models did.

The contributions of our model CLGAT-KGC are summarized
in the following three aspects.

1. Our proposed relation-enhanced entity representation
method enriches different types of relations and makes
the representation of each entity unique according to its
combination with different relations, enhancing knowledge
representation learning.

2. To improve the learning of entity and relation representa-
tions, we propose two CL strategies for KGC, one based on
the hierarchy of neighbors in the graph and the other based
on potential semantic relations.

3. The effectiveness of our model for link prediction tasks un-
der KGC has been verified through extensive experiments
on both the FB15K-237 and WN18RR datasets.

The remainder of this paper is structured as follows. We first
review the related work in Section 2. Then, we thoroughly de-
scribe our proposed CLGAT-KGC model in Section 3. Finally, the
experiments are discussed in Section 4, and the conclusion and
scope for future work are presented in Section 5.

2. Related work

For easier understanding, first, we have introduced some
mainstream KG inference methods for KGC such as linear/bilinear
models, factorization models, neural network-based models, and
ontology models. Secondly, in Section 2.2, we briefly introduce
GNNs and introduce the most relevant mainstream models for
KGC based on GNNs for comparison purposes.
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Fig. 1. Example of a multi-relational KG.
.1. Representation learning of KGs

KG representation learning has been attracting attention as
common means for KGC. Among KG representation learning
ethods, the most widely used are embedding models, which
ave shown high efficiency in many KG-based applications. Most
f these embedding models work by learning the representation
f entities and relations in a low-dimensional space and then
sing the learned tensors to predict the missing elements. We
enerally classify these embedding models into four categories:
ranslation-based models, tensor decomposition-based models,
eural network-based models, and ontology models.
For each triple (h, r, t), translation-based transformation mod-

els treat the relation r as a transformation from the head entity
h to the tail entity t. TransE [11], which depicts a hyperplane
transformation, is an early representative of this type of model.
For each triple (h, r, t) in the KG, the existential approximation
equation h+r≈ t is used to express it. Some subsequently derived
column models have generally tried to project the representa-
tion of entities and relations into other spaces to overcome the
disadvantage of the TransE [9] model in dealing with complex
relations such as many-to-many, one-to-many, and many-to-one
relations. Examples of these models include TransH [35]; TransR
[36]; TransD [37]; and the current state-of-the-art embedding
model RotatE [13], which defines each relation as a rotation from
head entities to tail entities in a complex space. An example of
the ontology-based model is TransO [19], which can effectively
model relationships explicitly and seamlessly to improve the
model performance and keep the model complexity low.

A tensor-based decomposition model is a model that decom-
poses knowledge representation learning into three tensors. Mod-
els such as these usually reduce high-dimensional KG data into
low-dimensional tensors, making complex problems simple. An
example of this model is RESCAL [38], which uses vectors and
matrices to represent entities and relations, respectively. Subse-
quently, a series of models based on tensor decomposition were
derived: ComplEx [11], DistMult [10], and TuckER [14].

The neural network-based model includes the neural tensor
network (NTN) model [16] and the convolutional neural network
3

(CNN)-based typical models ConvE [17] and ConvKB [18]. Among
them, NTN [16] is a vector embedding that projects the entity to
the input layer. The embeddings of the head and tail entities are
then combined through a specific tensor and used as an input
to the non-linear layer to compute the score. CNNs have many
advantages, such as efficient parameters and fast training. Owing
to these excellent properties, they have been widely used in
KGEs. ConvKB [18] improves the state-of-the-art model by using
other CNNs, capturing global relations and knowledge between
entities, while ConvE [17] uses convolutional feature filters to
filter reshaped matrices of feature and relation embeddings.

2.2. GNN-based KGC model

Unlike traditional graph embedding models such as Node2Vec
[39] and DeepWalk [40], GNNs use deep neural networks for
representation learning under the single-node aggregation ap-
proach for intent GNNs. The core formulation of GNNs is shown
in Table 1.

GCN [20] is a GNN that has produced prominent results. It
aggregates messages from one-hop neighbors by performing lo-
cal convolutional operations on graph structure data, as shown
in the equation in Table 1. In a GCN, all the neighbors pass
messages of equal weight. Therefore, inspired by the attention
mechanism in Transformer [41], many applications based on the
multi-head attention mechanism were born. For example, using
the most popular GAT in GNNs, the local attention mechanism
was introduced into GCNs and very good results were obtained
[21,42].

Since the introduction of relational-GCNs (R-GCNs) [43], GNNs
have been used in KGEs to address the limitations of traditional
neural networks; their structures are limited to processing tradi-
tional Euclidean data. Also, the R-GCN introduced the GCN and
utilized it for processing multi-relational data in KGs. Then, the
weighted GCN was introduced using the searching architecture
calibration network (SACN) [45]; this GCN defined the strength of
two neighboring nodes with the same relation type and captured
structured information by using node structures, node features,

and relation types. Fig. 2 shows the encoder–decoder framework
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Table 1
Graph neural network and message functions.
GNN GNN-based KGC-model

GNNs Node aggregation Models Message function

GCN [20] H (l+1)
= σ

(
D̃−

1
2 Ã D̃−

1
2 H(l)W (l)

) R-GCN [43] Wreh
VR-GCN [44] W [(eh − er ) or (eh + er )]

GAT [21] −→

h
′

l = σ

⎛⎝∑
j∈Ni

αijW
−→
hj

⎞⎠ SACN [45] Wαreh
CompGCN [46] Wdir(r) (eh ⋆ er )
Fig. 2. Encoder–decoder framework of GCN-based KGC [25].
Fig. 3. Proposed model with three attention heads and one attention layer. The embeddings of the entities and relations are updated, the representations of the
entities and relations are updated through CL, and finally, the encoder is used to calculate the score.
of the GCN-based KGC. Here, the GCN is an encoder that generates
entity and relation representations based on the graph structure;
and the KGE model is a decoder that recovers the KG structure
based on the entity and relation representations generated by the
GCN. In the figure, the partially invisible links predicted by the
links are indicated by undirected red dashed lines.

The latest and most influential KGC model that uses the
ncoder–decoder architecture is CompGCN [46], which was pro-
osed to jointly learn node embeddings and relational repre-
entations in a multi-relational graph and solve the parame-
er overload problem that existed in previous work on multi-
elational graph representation (GNN aspect). Almost all the
urrent mainstream GNN-based KGC models follow the encoder–
ecoder architecture shown in Fig. 2 [25].

. CLGAT-KGC model

In this section, we present our proposed CLGAT-KGC model.
e have first introduced the general framework of the model,

ollowed by the relation-enhanced entity representation module,

he CL module, and the decoder layer scoring module.

4

3.1. Overall architecture

The architectural process of our proposed CLGAT-KGC model
is shown in Fig. 3. The overall process is shown in Algorithm 1.
The architecture and workflow of the model is shown from left
to right in Fig. 3. First, the entire triple of the KGs was taken
as the input. Each value in the triad was embedded into a con-
tinuous vector space while preserving the semantic information.
To fully capture the higher-order structural information of the
KG, we used a graph attention-based embedding to propagate
the information approach and used our proposed method that
worked on relationally enhanced entity representation to obtain
the aggregated entity representation.

After obtaining the entity and relation representations in the
GNN layer, we inputted the initialized representations of the
entities and new representations to the CL layer based on the
hierarchy of the neighbors. Then, we inputted the new repre-
sentations to the potential semantic relation-based layer and
partitioned them into K clusters for contrastive learning to en-
hance the knowledge representation. Finally, we inputted the
entity and relation representations to our decoder layer to obtain

the scores of the link prediction.
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.2. Methods for relation-enhanced entity representation

Through our model, we propose a relation-enhanced entity
epresentation in a multi-relational setting based on the three KG
nformation flow directions followed by CompGCN [46], namely
riginal, self-loop, and inverse. We defined the KG as G =

E,R, T ), where ε denotes the set of entities, R denotes the set
f relations, and T denotes the set of edges. Each edge (h, r, t)

indicates that the head entity h to tail entity t is real in the case of
the relation r ∈ R. We used concepts introduced under CompGCN.
Our same extension extended ε and R with the homologous self-
loop and inverse relations, i.e., T ′

= T ∪ {h, r−1, t | (h, r, t)
{T }} ∪ {h, ⊤, h | h ∈ E}, and R′

= R ∪ Rinv∪ {⊤}, where
and Rinv = {r−1

| r ∈ R} represent the self-loop and inverse
elations, respectively. The right side of Table 1 shows how some
ommon models use message functions to represent learning
nformation from the neighbor nodes and edges. If the head entity
is connected to the tail entity t through the relation r, the

ombination is represented as Eq. (1):

(h,r,t) = φ (eh, er , et) (1)

Consistent with the approach followed under CompGCN and
nlike most approaches that embed nodes only in the graph,
ur model simultaneously learned the entity embedding repre-
entation of the d-dimensional representation; eh, et ∈ Rd and
he d-dimensional relation is expressed as er ∈ Rd. Additionally,
(·) represents a combinatorial operator, which serves to merge
elational embeddings into entity embeddings in some way. We
sed the combination of entities and relations c(h,r,t) to generate
he delivery message, as shown in Eq. (2):

(h,r,t) = M
(
c(h,r,t)

)
(2)

here m(h,r,t) denotes the messages from the head entity h
hrough the relation r to the tail entity t; and M(·) denotes
he filters for the three different message flow directions (to be
escribed later). As we stated in Section 1, we propose that when
n entity is connected to different relations, it is not represented
xactly alike; we wanted different relations to have different
ffects on the central entity t. To implement this type of message
assing, we extracted the relational features for augmenting the
ntity representation by introducing a learnable parameter wr for
ach relation. The message passing formula under a particular
elation is shown in Eq. (3):
r
(h,r,t) = φr (eh, er , et , wr) (3)

To reduce the computational complexity and memory con-
umption, we defined wr as a diagonal matrix, wr ∈ Rd0×1.
As followed under CompGCN, we used wr for three combi-

atorial operators for message functions, inspired by TransE [9],
istMult [10], and HolE [11]. Our augmentation of each operator
s shown here.

(1) Subtraction (Sub): Φr (eh, er , et , wr ) = wreh − er
(2) Multiplication (Mult): Φr (eh, er , et , wr ) = (wreh) ⊕er ,

where ⊕ represents the Hadamard product.
(3) Circular-correlation (Corr): Φr (eh, er , et , wr ) = (wreh) ⋆ er ,

where ⋆ stands for the cyclic operator operation in HolE
[12].

Inspired by the approach under CompGCN, we defined a sepa-
rate filter for each of the three different directions of the original,
inverse, and self-loop edges in Eq. (4):

m = M
(
c

)
= w cr (4)
(h,r,t) (h,r,t) dir(r) (h,r,t)

5

where the weights of the three different directional edges are
defined as follows:

wdir(r) =

⎧⎪⎨⎪⎩
wO if r ∈ R

wI if r ∈ Rinv

wS if r ∈ {⊤}

(5)

The terms O, I, and S in the above Eq. (5) represent the original,
inverse, and self-loop directions, respectively.

Typically, traditional GCN models model the message update
function for obtaining the embedding representation after node t
is updated, as shown in Eq. (6):

e′

t = f

⎛⎝ ∑
(h,r)∈N (t)

Wm(h,r,t)

⎞⎠ (6)

where f represents the nonlinear activation function, and N(t)
represents the set of entities and relations that are directly ad-
jacent to the central entity t. Based on the parameters of the
GCN model being summed using a fixed weight parameter W,
we introduced an attention mechanism to achieve a different
attention level for each message. Like in GATs [21], we used
a single layer feedforward neural network to implement the
attention mechanism module and defined the weight matrix as
wT ∈ R1×d1 . We used Leaky ReLu as the activation function, as
shown in Eq. (7):

bh,r = LeakyReL U
(
WTm(h,r,t)

)
(7)

where bh,r represents the absolute attention coefficient of each
message from entity h to entity t. We used the softmax function
on the message attention bh,r to obtain the relative attention
values in Eq. (8):

αh,r = softmax
(
bh,r

)
=

exp
(
bh,r

)∑
i∈N(t)

∑
r∈Ri,h

exp
(
bi,r

) (8)

where Ri,h denotes the set of relations connecting the entities h
and i. To obtain the output after the entity update, we obtained
the linear combination of the normalized attention coefficients
with the message function in Eq. (9):

e′

t = f

⎛⎝ ∑
(h,r)∈N (t)

αh,rm(h,r,t)

⎞⎠ (9)

Inspired by the approach of the NLP domain transformer [41],
we also employed multi-headed attention, enabling the model to
capture subspace parameters from different relational parameters
for stabilizing and improving the learning and effectiveness of
the model, respectively. We used the averaging method for N
independent attention heads and chose TanH as the activation
function whose output entity t embedding is represented as
Eq. (10):

e′

t = f

⎛⎝ 1
N

N∑
h=1

∑
(h,r)∈Nt

αh
h,rm

h
(h,r,t)

⎞⎠ (10)

To use the same dimensionality in the decoder layer for em-
bedding the entities and relations, we propose using a weight
matrix Wt ∈ Rd1×d for transforming the relational dimension in
Eq. (11):

e′

r = Wter (11)

where Wt is a learnable weight matrix for transforming the
embedding space of the relations into the same as that of the
entities.
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3.3. Node-level contrastive learning modules

Inspired by recent CL-based applications in computer vision,
L is developing quickly in various fields. A common tool used
egarding the components of GNNs is graph augmentation, which
oth adds edges to and subtracts them from graphs [47–49]. We
ropose two node-level CL methods for KGC. The first one is a
ierarchical-neighbor based CL approach. The second one is a CL
ethod based on potential semantic relations.
6

3.3.1. CL approach based on hierarchical neighbors
We want to further improve the representation of entity

and relation embeddings by CL; so, we propose enabling en-
tity/relation learning through contrasts with their hierarchical
neighboring layers whose representations are propagated through
GNN layers to aggregate messages. We used the initialized feature
embeddings or learnable embedding representations of entities
as a positive contrast to their own embedding representations
after K GNN layer inputs were used to improve the entity-relation
representations by closing the distance between the two positive
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amples, which we define as the loss formula (Eq. (12)):

E
S =

∑
e∈E

− log
exp

((
z(k)
e · z(0)

e /τ

))
∑

v∈E exp
((

z(k)
e · z(0)

v /τ

)) (12)

where Z (k)
e is the entity representation of the output after the

introduction of the K th layer of the GAT and normalization; and
τ is the temperature parameter, which is an important hyperpa-
rameter in CL.

Similarly, the initialized embedding of the relation was used
as a positive contrast with its own transformed embedding, as
shown in Eq. (13):

LR
S =

∑
r∈R

− log
exp

((
z(k)
r · z(0)

r /τ

))
∑

j∈R exp
((

z(k)
r · z(0)

j /τ

)) (13)

The complete hierarchy-based neighborhood loss function is
a weighted sum of the two loss functions mentioned, which is
shown in Eq. (14):

LS = LE
S + ΩLR

S (14)

where Ω is the weight that controls the entity-based contrast as
well as the relation-based contrast.

3.3.2. CL methods based on potential semantic relations
The above hierarchy-based neighbor CL approach explicitly

mines the hierarchical neighbor relations in the KG. This approach
treats the hierarchical neighbors of entity nodes and relations
equally, which inevitably introduces noise. To reduce the impact
of this noise on the hierarchical-neighbor comparison and further
explore the potential semantic relations between entity nodes
to improve the entity node representation. We then propose
a comparison based on potential semantic relations to extend
the hierarchical contrast. Potential semantic relations are entity
nodes that may not be reachable in the KG but have similar
features at the semantic level.

Inspired by [30], w e could identify and mine potential se-
mantic relations by learning each entity representation and gen-
eralizing them using CL to better capture the potential semantic
relations between entity nodes. Usually, entity nodes with similar
features tend to be represented in the adjacent embedding space.
Therefore, we applied the clustering algorithm to the embedding
representation of the entity nodes after GNN initialization. There
are many new clustering algorithms [50]; for convenience, we
used the classic K-means clustering algorithm. It was used to
cluster all the entity nodes into different classes, allowing us to
7

apply CL very well. In the K-means clustering algorithm, for each
category that is divided, there is a cluster center, which is called
the prototype. Within a category, the cluster center is the positive
sample, while the other cluster centers are the negative samples
of the nodes, as shown in Fig. 4. The contrastive learning loss
function is shown in Eq. (15):

LP =

∑
u∈E

− log
exp (eu · ci/τ)∑

cj∈C ̸=i exp
(
eu · cj/τ

)
+ exp (eu · ci/τ)

(15)

here Ci is the prototype of the entity set E , which is obtained by
erforming K-means clustering on the embedding of all the entity
odes. K clusters were obtained after the clustering algorithm
as performed to cover all the entity nodes.

.4. Introduction to the decoder layer

In our study, we used three different decoders to verify the
alidity of our model, namely DistMult [10], ConvE [17], and
nteractE [46].

DistMult was obtained by restricting the relation matrix Mr in
he Rescal [38] model to a diagonal matrix, which reduced the
umber of parameters of the bilinear model to the same as that
f TransE. Its scoring function is given by Eq. (16):
b
r

(
ye1 , ye2

)
= yTe1Mrye2 (16)

here ye1 = f (Wxe1), ye2 = f (Wxe2) are the head and tail entities,
espectively.

ConvE is one of the most common decoders used for com-
uting the evaluation probabilities of triples. ConvE models the
nteractions between input entities and relations through convo-
utional and fully connected layers. First, it reshapes the embed-
ings of head and tail entities into a two-dimensional tensor, and
hen, applies the standard convolution operation to the reshaped
ensor to compute the score of the triple. Given a triple (h,r,
), ConvE has the following triplet scoring function shown in
q. (17):

(h,r,t) = ReLU (vec (ReLU ([eh; er] ∗ ω))W) et (17)

here the vec(·) operation flattens the tensor into a vector.
InteractE is an improved version of the ConvE model. It en-

hances the expression of ConvE through feature permutation,
checkered feature reshaping, and circular convolution. For the
input (eh, er ), a random permutation is first generated, as shown
in Eq. (18):

P =
[(
e1, e1

)
, . . . ,

(
en, en

)]
(18)
n h r h r
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Table 2
Dataset statistics for FB15K-237 and WN18RR.
Dataset #entity #relation #training #valid #test

FB15K-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3034 3134

Then, InteractE performs the checkered feature reshaping op-
ration φchk(eh, er ), ∀i ∈ {1, . . . , n}, as shown in Eq. (19):

φchk (Pn) =
[
φchk

(
e1h, e

1
r

)
, . . . , φchk

(
enh, e

n
r

)]
(19)

The implementation formula for evaluating the probability of
real triple (h, r, t) implemented using InteractE can be written

ormally as Eq. (20):

(h,r,t) = g (vec (f (φchk (Pt) ⊛ ω))W) et (20)

here vec(·) denotes the tilting of the tensor into a vector;
and ⊛ represents circular convolution in the depth direction; ω

denotes the convolution filter; W is a weight matrix; and f and g
represent the ReLu and Sigmoid activation functions, respectively.

To train our model, we used the cross-entropy loss function
optimized for label smoothing as the master function for our task,
as shown in Eq. (21):

Lm = −
1
N

∑
i

(ti · log (pi) + (1 − ti) · log (1 − pi)) (21)

here ti denotes the label of the triplet; and pi denotes the
orresponding score.
In summary, our model can be described as a multi-task learn-

ng approach, and the total loss of the model tasks is defined in
q. (22):

= Lm + αLs + βLp (22)

here α and β are used to control the weights between the losses
f multi-task learning.

. Experiments

To verify the validity of our proposed model, we conducted
any experiments and reported the detailed analytical results.
hen, for the link prediction task, we evaluated the inference
apability of our model, compared it with those of baseline mod-
ls, analyzed the sensitivity of the model parameters, and finally
erified the validity of our model by further analysis through
blation experiments.

.1. Experimental setup

.1.1. Datasets
We evaluated our model using two commonly used datasets

n the KG domain, namely WN18RR and FB15K-237; the cor-
esponding statistics are shown in Table 2. WN18 and FB15K
9] were pointed out in later work [17,51]; these datasets had
he drawback of test set leakage. The WN18RR and FB15K-237
atasets were released after the inverse relations were elimi-
ated. Our experimental dataset does not include the WN18 and
B15K datasets.
TheWN18RR dataset comprises 41K grammar sets fromWord-

et and 11 relational collections. FB15K-237 contains 15K entities
nd 237 relations from Freebase. Table 2 shows the detailed
escriptions of these two datasets.
8

4.1.2. Evaluation metrics
The evaluation protocol for the link prediction task was the

same as that followed under CompGCN, where a ranking criterion
was used for evaluation. For each test triple (h, r, t), we randomly
replaced h and t with all the entities in the dataset to generate
a corrupted triple as our negative sample for score calculation.
The input triad was then used by the decoding layer to calculate
the score of its triads and rank them in descending order. We
obtained the ranking of the correct triad among the candidate
triad entities. Like mainstream baselines, we reported the exper-
imental results in the ‘‘filter’’ setting, as in TransE; we removed
the corrupted triples already present in the dataset during the
ranking. Our evaluation metrics were Mean Reciprocal Ranking
(MRR), Mean Rank (MR) and Hits@n (n = 1, 3, 10).

The specific calculation formula for MRR is Eq. (23):

RR =
1
|S|

|S|∑
i=1

1
ranki

=
1
|S|

(
1

rank1
+

1
rank2

+ · · · +
1

rank|S|

)
(23)

here S is the set of triples, |S| is the number of triple sets, and
ranki is the link prediction rank of the ith triple. The larger the
MRR value, the better the model is.

The specific calculation formula of MR is Eq. (24):

MR =
1
|S|

|S|∑
i=1

ranki =
1
|S|

(
rank1 + rank2 + · · · + rank|S|

)
(24)

The symbols in the MR and MRR formulas represent the same
ariables. The smaller the MR value is, the better the model is.
Hits@n refers to the proportion of correct entities ranked in

he top N in the link prediction, which is calculated in Eq. (25):

ITS@n =
1
|S|

|S|∑
i=1

I (ranki ⩽ n) (25)

here II(·) is the indicator function. If the condition is true, then
he function value is 1; otherwise, it is 0. The larger the value of
his indicator, the better the model is.

.1.3. Training protocol and comparison of models
We used Pytorch [52] and the Adam [53] optimizer to imple-

ent our model and performed experiments on a PC server with
Nvidia RTX 3090 GPU. The final hyperparameters of our model
ere selected by grid search, which were determined based on
he combined MRR and MR metrics evaluated on the validation
et. Some of the important hyperparameters that performed well
or our link prediction task on the FB15K-237 and WN18RR
atasets are shown in Table 3.
To demonstrate the effectiveness of our proposed model for

he link prediction task under the domain of KGC, we used the
odels proposed in the following papers as baselines.

(1) TransE [9]: The earliest KGC model.
(2) DistMult [10]: A tensor decomposition-based KGC model,

which uses a bilinear scoring function approach for calcu-
lating the scores of triples.

(3) RotatE [13]: The model follows a new idea, defining each
relation as a rotation from the source entity to the target
entity in the complex vector space.

(4) ConvE [17]: A classical KGC model based on CNNs.
(5) SACN [45]: The model uses an end-to-end graph structure-

sensitive convolutional network, which can preserve the
translation properties between entities to relational em-
beddings based on the working of ConvE.



L. Li, X. Zhang, Y. Ma et al. Knowledge-Based Systems 256 (2022) 109889

a
o
b
o
I
i
o
s
a

m
p
3
F
b
a
e
w
b

f
W
a

Table 3
Hyperparameters that performed well on both datasets.
Dataset →

Hyperparameters ↓

FB15K-237 WN18RR

Learning rate 0.001 0.0005
Epoch 1000 1000
GCN_drop 0.4 0.4
Batch_size 1024 256
Entity_embedding 200 200
Relation_embedding 200 200
GNN_layer 1 1
nheads 2 1
Ω 0.5 0.5
α 0.4 0.4
β 0.6 0.6

(6) InteractE [54]: An extension of ConvE that adds interaction
between entities and relational embeddings.

(7) R-GCN [43]: An advanced extension to GCN that efficiently
models multi-relational data.

(8) A2N [55]: A novel model for learning the query-related
representations of entities based on GNN structures.

(9) MRGAT [56]: The model can selectively aggregate informa-
tion features and perform feature weighting completely.
The learned entities and relational embeddings can then be
used for downstream tasks such as KGC.

(10) HRAN [57]: Each relational path-based feature is aggre-
gated with the learned weight values to generate an em-
bedding representation to accomplish the KGC task.

(11) LTE [25]: The model proposes a framework for equip-
ping existing KGE models with linearly transformed entity
embeddings.

(12) DeepER [58]: The model utilizes rotation and reflection
transformations of group convolutions to generate more
expressive feature maps for entities and relations.

(13) CompGCN [46]: The model uses a new CNN framework and
embeds the representation of nodes and relations together
in the relational graph.

4.2. Results and analysis

4.2.1. Performance comparison on link prediction
In this subsection, we present a comprehensive evaluation

nd analysis of our proposed model, comparing its performance
n two datasets with five evaluation metrics with those of the
aseline models. Table 4 summarizes the experimental results of
ur proposed model under three different decoder layers, namely
nteractE, ConvE, and DistMult; and compares it with the exper-
mental results of the baseline models. The experimental results
f the baseline models are taken from [46,57], and the respective
ource papers of the models. The best results are depicted in bold,
nd the suboptimal results are underlined.
Compared to CompGCN [46], our CLGAT-KGC-InteractE model

ade greater progress on the FB15K-237 dataset; the MRR im-
roved by 5.3%, MR improved by 18.7%, Hits@1 improved by
.4%, Hits@3 improved by 2.5%, and Hits@10 improved by 2.9%.
or the WN18RR dataset, MRR improved by 1.2%, MR improved
y 40%, Hits@1 improved by 0.4%, Hits@3 improved by 1.2%,
nd Hits@10 improved by 3.6%. Additionally, our model showed
xcellent results compared to the remaining 12 baseline models,
ith a 1%–2% improvement in most metrics compared to the
aselines.
For the FB15K-237 dataset, we obtained optimal results for

our of the five metrics and suboptimal results for one. For the
N18RR dataset, we obtained optimal results for three metrics

nd suboptimal results for one. Generally, we found that our
9

model performed better on FB15K-237 wherein the number of
relations was more, while an embedding-based model like RotatE
[13] performed better for Hits@10 on WN18RR wherein the num-
ber of relations was less. Although we obtained good results on
the WN18RR dataset for Hits@10, our results were still slightly
inferior to those under RotatE. We attributed this to the main
relation patterns in WN18RR being symmetric/anti-symmetric
and inversed, whereas in WN18RR, almost all the entities were
words and belonged to the same entity type, making them more
suitable for the RotatE model. The effect of our model on FB15K-
237 for the MR indicator and on WN18RR for the Hits@1 indicator
was very different from that of HRAN, showing that the new
heterogeneous GNN inspired by HRAN also had special effects on
a very few indicators.

The general validity of our model was demonstrated after
experiments on both datasets. Our proposed model had consid-
erable advantages over the distance-based embedding model and
GCN-based CompGCN model. Compared with models such as A2N
[55], MRGAT [56] and HRAN [57] that also used attention to ag-
gregate messages, our model had better experimental results and
more effectively demonstrated the effectiveness of the proposed
relation enhancement method and CL method.

4.2.2. Comparison of different message functions and different de-
coders

In this subsection, we compare the different results of our
model on two datasets based on five metrics under different
message functions and different decoder layers for evaluating
the effectiveness of our model. To more precisely verify the
effectiveness of different decoder and message functions, we used
ConvE, DistMult, and InteractE as our decoders. Similarly, we
used three message functions, namely sub, corr, and mult, which
were consistent with CompGCN, to conduct experiments at each
decoder layer separately. The experimental results of different
decoder layers and their corresponding message functions are
shown in Table 5. The best results are depicted in bold, and the
suboptimal results are underlined.

Table 5 shows the specific and clear statistical results of the
experiments. The results of different message functions and de-
coder layers on the performance of the models can be observed.

In the decoder layer, our model had the best overall effect
when using InteractE as the decoder. ConvE was in second place,
while DistMult had a large gap with the previous two decoder
models. This also showed that the CNN-based model could be
better adapted to our model than the tensor decomposition-
based decoder model could. This moderately indicated that the
more advanced decoder layer could achieve better results for the
GNN-based KGC model.

In terms of message functions, the simplest message function
sub provided better results in both datasets when InteractE was
used as the decoder. When using ConvE and DistMult as the de-
coder, the more complex corr function was often used to achieve
better results. The results revealed that the message function
should neither be too complex nor simple. The message func-
tion should be selected for the model according to the specific
situation to obtain better experimental results.

4.2.3. Ablation experiments
To explore the contribution of each module, we conducted an

ablation experiment for our model. In the experiments, we used
InteractE as the decoder and corr as the message function. The
experimental results under the FB15K-237 and WN18RR datasets
are shown in Tables 6 and 7, respectively.

We deleted the potential semantic relation CL module, the
hierarchical neighbor CL module, and the relation-enhanced en-
tity representation module, layer by layer. Tables 6 and 7 show



L. Li, X. Zhang, Y. Ma et al. Knowledge-Based Systems 256 (2022) 109889
Table 4
Experimental results of proposed model performing link prediction on three decoder layers and two datasets.
Model FB15K-237 WN18RR

MRR↑ MR↓ Hits@1 Hits@3 Hits@10 MRR↑ MR↓ Hits@1 Hits@3 Hits@10

TransE [9] 0.294 357 – – 0.465 0.226 3384 – – 0.501
DistMult [10] 0.241 254 0.155 0.263 0.419 0.430 5110 0.390 0.440 0.490
RotatE [13] 0.358 177 0.241 0.375 0.533 0.476 3340 0.428 0.492 0.571
SCAN [45] 0.35 – 0.26 0.39 0.54 0.47 – 0.43 0.48 0.54
ConvE [17] 0.325 244 0.237 0.356 0.501 0.430 4187 0.400 0.440 0.520
R-GCN [43] 0.248 – – – 0.417 – – – 0.137 –
InteractE [54] 0.354 172 0.263 – 0.535 0.463 5202 0.430 – 0.528
A2N [55] 0.317 – 0.232 0.348 0.486 0.450 – 0.420 0.460 0.510
HRAN [57] 0.355 156 0.263 0.390 0.541 0.479 2113 0.450 0.494 0.542
MRGAT [56] 0.355 – 0.266 0.392 0.539 0.481 – 0.449 0.495 0.544
LTE [25] 0.355 249 0.264 0.389 0.535 0.472 3434 0.437 0.485 0.544
DeepER [58] 0.345 – 0.255 0.379 0.525 0.476 – 0.446 0.490 0.535
CompGCN [46] 0.355 197 0.264 0.390 0.535 0.479 3533 0.443 0.494 0.546

Ours-InteractE 0.364 160 0.274 0.402 0.551 0.484 2104 0.448 0.550 0.566
Ours-ConvE 0.362 165 0.269 0.399 0.549 0.483 2411 0.447 0.495 0.556
Ours-DistMult 0.348 192 0.255 0.382 0.530 0.450 2823 0.409 0.460 0.535
Table 5
Comparison of experimental results under different decoders.
Decoder+message FB15K-237 WN18RR

function MRR↑ MR↓ Hits@1 Hits@3 Hits@10 MRR↑ MR↓ Hits@1 Hits@3 Hits@10

InteractE+sub 0.364 160 0.274 0.402 0.551 0.484 2104 0.448 0.500 0.566
InteractE+corr 0.365 171 0.273 0.400 0.550 0.486 2252 0.449 0.504 0.562
InteractE+mult 0.363 176 0.270 0.399 0.546 0.487 2393 0.447 0.505 0.560
ConvE+sub 0.361 156 0.268 0.397 0.547 0.477 2322 0.431 0.485 0.555
ConvE+corr 0.362 165 0.269 0.399 0.549 0.483 2411 0.447 0.495 0.556
ConvE+mult 0.363 163 0.270 0.399 0.546 0.471 2925 0.426 0.490 0.554
DistMult+sub 0.338 195 0.248 0.370 0.517 0.438 3366 0.398 0.453 0.523
DistMult+corr 0.348 192 0.255 0.382 0.530 0.450 2823 0.409 0.460 0.535
DistMult+mult 0.344 199 0.254 0.390 0.527 0.453 2967 0.410 0.468 0.539
Table 6
Results of ablation experiments under FB15K-237 dataset.
Perspective detail MRR↑ MR↓ Hits@1 Hits@3 Hits@10

·Full model 0.365 160 0.274 0.402 0.551

·w/0 Potential semantic relations 0.364 190 0.272 0.399 0.549

·w/0 Potential semantic relations
·w/0 Hierarchical neighbor

0.363 197 0.271 0.398 0.548

·w/0 Potential semantic relations
·w/0 Hierarchical neighbor
·w/0 Relation enhancement method

0.361 207 0.269 0.397 0.545

CompGCN [46] 0.355 197 0.264 0.390 0.535
Table 7
Results of ablation experiments under the WN18RR dataset.
Perspective detail MRR↑ MR↓ Hits@1 Hits@3 Hits@10

·Full model 0.486 2252 0.449 0.504 0.562

·w/0 Potential semantic relations 0.485 2398 0.448 0.500 0.561

·w/0 Potential semantic relations
·w/0 Hierarchical neighbor

0.483 2418 0.448 0.500 0.556

·w/0 Potential semantic relations
·w/0 Hierarchical neighbor
·w/0 Relation enhancement method

0.483 2495 0.448 0.495 0.553

CompGCN [46] 0.479 3533 0.443 0.494 0.546
the corresponding contributions of each module. Among them,
the potential semantic relation-based module provided better
MR values; we assumed it improves the model’s ability to rank
10
unseen triples with potential relations. The other modules had
different degrees of improvement for each indicator. The experi-
mental results in Tables 6 and 7 clearly show the effectiveness of
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Fig. 5. Parameter sensitivity of different τ values on FB15K-237 dataset.
our model. The ablation experiments also proved that embedding
the CL module between the encoder and decoder layers of our
model could perfectly fit the link prediction task and improve the
experimental effect of the model, confirming the applicability and
effectiveness of our proposed introduction of CL into the field of
KGC.

4.2.4. Parameter sensitivity
We conducted extensive experiments on the FB15K-237

dataset to investigate the parameter sensitivity of three impor-
tant parameters in our model.

(1) Impact of temperature τ : The temperature parameter
mainly regulated the degree of attention to difficult samples
[59]. Considering the more extreme two cases, when τ tended
to 0, the contrast loss function degenerated to a loss function
that focused only on difficult negative samples, while when τ

tended to infinity, all the negative samples were treated equally
under the contrast loss and the focus property of difficult negative
samples was lost. To verify which τ was more suitable, we chose
τ = 0.1, 0.2, 0.3, 04, and 0.5; the experimental results are shown
in Fig. 5. Our model had the best results when τ = 0.3. This also
reaffirmed the principle that τ should neither be too large nor
too small [59].

(2) Impact of prototype number K : To check the impact of
the aggregation category number K on the model, we conducted
experiments using different aggregation numbers. The experi-
mental results are shown in Fig. 6. The results showed that the
model had the best effect when K = 20, and the model effect
decreased to different degrees when K was larger or smaller
than 20. This was mainly because too many aggregated categories

would increase the noise of the model, while too few of them

11
would be insufficient to explore the potential semantic relations
in the KG.

(3) Impact of hierarchical-neighbor based CL loss weight α and
potential semantic relation-based CL loss weight β:To investigate
the importance of the two CL losses in our multitask learning, we
set several proportional weights to control the importance of the
two CL losses. The results are shown in Fig. 7. The model worked
best when α: β = 0.4: 0.6.

4.2.5. Depth of network layers L
To check the effect of network layers L, we explored the

performance of the proposed method with different depths. The
results are shown in Fig. 8. The results showed that our model
had the best performance when the depth of the GNN layers was
1. As the number of network layers increased, the experimental
results became worse. This was mainly because when the number
of GNN layers increased, the aggregated features would become
too smooth, degrading the performance of the model.

4.2.6. Multi-head attention mechanism
As shown in Fig. 9, we used 1, 2, and 3 attention heads on

the FB15K-237 and WN18RR datasets. The graph for the FB15K-
237 dataset has a sharp angle shape, and the best results were
obtained when the number of attention heads was 2. For the
WN18RR dataset, the experimental results deteriorated as the
number of attention heads increased, and the best results were
obtained when there was 1 attention head.

5. Conclusion and future work

In this study, we propose a KGC model based on CL and the
relation-enhanced entity representation method for link predic-

tion under KGC. The model could obtain different representations
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Fig. 6. Parameter sensitivity of different K values on FB15K-237 dataset.
Fig. 7. Parameter sensitivity of different α and β values on FB15K-237 dataset.
f
or entities when the same entity was combined with different
elations, and the representation of the entities and relations was
 m

12
urther improved after using CL at the node level. The experi-
ental analysis of our model on both FB15K-237 and WN18RR
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Fig. 8. Experimental results of proposed model on FB15K-237 and WN18RR datasets for different depths of network layers.
Fig. 9. Experimental results of proposed model on FB15K-237 and WN18RR datasets when multihead attention mechanism is implemented using different numbers
of heads.
datasets with multiple decoder layers and multiple message func-
tions showed that our model could achieve better results in link
prediction tasks. In the future, we intend to design a more effi-
cient graph CL approach and more improved GNNs for extending
our model.
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