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There have been excellent results using knowledge graphs in recommender systems. Knowledge graphs
can be used as auxiliary information to alleviate data sparsity and strengthen the modeling of item sets
and the representation of user preferences. However, users as the Core subject in the recommendation
process, should be taken seriously. We believe that the user’s choice of items will be affected by internal
and external factors. Internal factors refer to the users’ fuzzy interest sets, which initially affect the users’
choices. External factors refer to the influence of similar users and similar items in the users’ selection of
items. Inspired by the success of contrastive learning in graph collaborative filtering, we propose the
Knowledge Augmented User Representation (KAUR) model to explore contrastive learning in collabora-
tive knowledge graphs, learning semantic neighbors (external factors) and extract fuzzy interest sets (in-
ternal factors) from collaborative knowledge graphs. Specifically, we use the graph neural network to
learn the representation of each node in the collaborative knowledge graph and regard the information
of nodes and their propagated neighbors’ information as positive contrastive pairs, and then use con-
trastive learning to enhance the node representations. To further explore the potential interests of users,
we regard users (or items) with other similar users (or items) as semantic neighbors and incorporate
them into contrastive learning as positive pairings as well. Then the extracted fuzzy interest sets are
merged into the user representations to get better interpretability. We conduct extensive experiments
on three standard datasets and the results show that our KAUR model outperforms current state-of-
the-art baselines.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

There is a lot of knowledge on today’s Internet. Generally speak-
ing, this knowledge is not isolated but interrelated; the same is
true in recommender systems. The traditional collaborative filter-
ing algorithms [14,29,50] are the cornerstone of recommendation
system research. However, collaborative filtering algorithms usu-
ally face data sparsity and cold start problems. Knowledge graphs
(KGs) provide rich item-side information [30,34,35,1], which alle-
viates the problem of data sparsity in the recommendation process
and provides a new idea for the interpretability and accuracy
research of recommender systems.
The main research content of the recommender systems based
on KGs is how to integrate the heterogeneous information on the
item side into embedding users and items. The current KGs-
based recommender system research can be roughly divided into
three categories: embedding-based methods [1,48,31,17,33,2,16],
path-based methods [30,49,47,12,15,10,44,38] and propagation-
based methods [34,32,39,35,7,51,28,22]. DKN [31] learns entities
contained in news through the knowledge graphs embedding
method to capture the connections between different news for
click-through rate prediction. RippleNet [30] incorporates an
embedding-based approach into recommendation through prefer-
ence propagation and explores possible paths from user-interacted
items to candidate items. KGCN [34] and KGNN-LS [32] sample the
neighbor information of each entity in the KGs and aggregate the
sampled information onto item entities. Model higher-order infor-
mation by extending the receptive field to capture the potential
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long-range interests of users. MKGAT [26] leverages multi-modal
knowledge to provide better recommendation, which utilizes
graph attention mechanism for information dissemination on mul-
timodal KGs and uses the resulting aggregated embeddings for the
recommendation. FG-RS [8] uses the user-item’s historical interac-
tions to model the user’s interaction preferences and mines the
user’s fine-grained preferences from all attributes of the items.
KGIN [37] extracts different intents from KGs to represent user
preferences, distinguishes paths of node information and encodes
the semantic and relational dependencies of paths into
representations.

Although the current research has achieved good results, we
find that there are still some problems: (1) The user is an important
role in the recommendation process and the quality of user model-
ing will greatly affects the performance of the recommender sys-
tems. Although KGs can be viewed as graph structure of attribute
knowledge about items, it is more or less important to users. How-
ever, KGCN [34] and KGNN-LS [32] fail to adequately model users,
downplay the role of users in the recommendation process and
ignore explicit collaboration signals and interactions. Therefore,
we explore some factors that can enhance user representations
from the KGs. (2) In real life, a user’s preference for an item is
not only affected by similar items, but also by similar users. How-
ever, MKGAT [26] and KGIN [37] learn collaboration signals from
graph structures and relational paths, respectively, and fail to con-
sider the effects of similar users fully. Moreover, it is far from
enough to learn the influence of the interaction graph between
the users and the items or the physical structure of the KGs, so
we need to learn this potential influence through the semantic
structure to improve the user modeling further.

Applying contrastive learning to graph collaborative filtering is
also a recent research hotspot. SGL [42] generates multiple views
for each node through the randomwalk, node missing, relationship
missing, and maximizes the similarity of different views of the
same node and minimizes the consistency of views of different
nodes. MCCLK [55] considers three different views for KG-aware
recommendations to mine comprehensive graph features and
structural information in a self-supervised manner. These methods
are effective in the recommendation domain. However, the current
way of constructing a comparison structure cannot effectively uti-
lize graph nodes’ high-order relationship and ignores collaboration
and semantic information.

To solve the above problems, this paper aims to strengthen user
modeling and propose a Knowledge Augmented User Representa-
tion (KAUR) model. Specifically, it mainly contains two structures:
(1) Collaborative knowledge graph message dissemination and
aggregation. We perform LightGCN [13] operation on the collabo-
rative knowledge graph (CKG) to obtain the high-order structure
and semantic information in the CKG to learn the representation
of each node. Of course, this is not enough. Compared with the tra-
ditional contrastive learning of different views, we are inspired by
NCL [19] and find that the output of the k-th layer of graph neural
network (GNN) is the aggregated information of k-hop neighbors
containing nodes. Therefore, we regard each node of the CKG and
its k-hop neighbor aggregated information as node-level positive
alignment, and use contrastive learning to minimize the distance
between them and enhance the representation learning of nodes.
(2) Fuzzy interest set extraction and user representation enhance-
ment. Unlike KGIN [37], we believe that when users choose items
in most cases, their preferences are vague and their preferences
will be affected by internal and external factors. The internal fac-
tors refer to the user’s own fuzzy interest set, which drives the user
to choose different items. The semantics of fuzzy interest sets are
opaque. Considering the importance of relation composition, we
extract fuzzy interest sets from the relation set of CKGs, and
emphasize the maximum difference of each element in the fuzzy
104
interest sets. External factors refer to users being influenced by
similar users (or items) when making item selections. To mine
the potential influence of similar users (or items), we define them
as semantic neighbors. Semantic neighbors refer to semantically
similar neighbors that may not be directly connected in the graph
structure. Since centroids exist for the set of semantic neighbors of
users (or items), we use contrastive learning to obtain correlations
between users (or items) and the centroids.

Our contributions to this work can be summarized as follows:

� We apply node-level contrastive learning to collaborative
knowledge graphs, minimizing the distance between nodes
and high-order neighbor information to enhance node
representations.

� We propose a knowledge-augmented user representation
model KAUR, which explores user fuzzy interest sets and
semantic neighbors from both internal and external aspects.

� We conduct extensive experiments on three public datasets and
demonstrate that our model outperforms current state-of-the-
art baselines.

The rest of this paper is organized as follows. Section 2 provides
a comprehensive overview of related work, including knowledge
graph-based recommendation, contrastive learning, and graph col-
laborative filtering. In Section 3, we introduce the relevant con-
cepts of this work and define our task. In Section 4, we introduce
the implementation details of KAUP. In Section 5, we present the
experimental results and analyze them in detail. In Section 6, we
summarize our work and give directions for future research.
2. Related work

This section discusses existing work on KGs-based recommen-
dation, contrastive learning, and graph collaborative filtering,
which are closely related to our work.
2.1. KGs-based recommendation

2.1.1. Embedding-based methods
Most of the early research on KGs-based recommender systems

used knowledge graph embedding models (TransE [5], TransR [18],
TransH [40]). CKE [48] learns the representation of items by con-
sidering the heterogeneity of entities and relationships in the
knowledge graph through TransR [18]. KTUP [6] uses TransH [40]
to unify the recommendation task and the knowledge graph com-
pletion task, where user preferences are induced by user-
interaction and KG relations. CFKG [1] combines user behavior,
item and knowledge information into a user-item KG and consid-
ers user behavior (click, purchase) as a relationship between enti-
ties. Huang et al. [17] integrate an RNN-based network with a key-
value memory network (KV-MN) and use a knowledge base to
enhance the semantic representation of KV-MN to improve the
performance of sequential recommendations. MKR [33] utilizes
the knowledge graph embedding task to assist the recommenda-
tion task, modeling the problem as multi-task learning. And a
cross-compression unit is designed to automatically share latent
features and learn higher-order interactions. TransMKR [16] intro-
duces multi-task learning into point of interest recommendation,
using TransR [18] to improve MKR’s knowledge graph embedding
module to quantify the relationship between point of interests
and their attributes. KGFlex [2] employs lowdimensional embed-
dings of knowledge in KGs to represent item features and simu-
lates user-item interactions by combining user-relevant subsets
of item features. Embedding-based methods deal with each entity
and relation learning individually, focusing on strict semantic rel-
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evance, i.e., this method is more suitable for link prediction rather
than recommendation tasks.
2.1.2. Path-based methods
Path-based methods explore connection patterns between

nodes in a KG and extract paths with higher-order information.
Most of these methods utilize multi-hop paths in KGs to improve
recommendation performance. These paths can also be used as
propagation paths of user preferences to represent user prefer-
ences intuitively. FMG [49] and PER [47] treat a KG as a heteroge-
neous information network, from which meta-path latent features
are extracted to represent the connectivity between users and
along different types of relational paths. In the field of course rec-
ommendation, ACKRec [12] uses graph convolution network to
learn entity representations for content information and context
information, and uses meta-paths over heterogeneous information
network to guide the propagation of student preferences. MCRec
[15] and MEIRec [10] use interactions between users and items
to encode metapaths, where the dataset predefines meta-paths.
PGPR [44] uses reinforcement learning to build a path between
users and items, and extract recommendation results along a mul-
tihop path. TMER [9] places the user’s dynamic behavior on the
global knowledge graph for order-aware recommendation, and
exploits the attention mechanism to explore user-item and item-
item meta-paths for interpretable recommendations. KPRN [38]
uses entity embedding and relation embedding to build relation
paths, and then encodes relation paths with LSTM. However, when
the KG is relatively large, it is very troublesome to manually design
themeta-path ormeta-graph, and the selection of the initial path is
very important to the model performance, so these methods are
difficult to optimize in practice.
2.1.3. GNN-based methods
In recent years, GNNs have shown great potential in text classi-

fication, node prediction and recommender systems. A GNN aims
to model nodes and graph structures, a commonway is to integrate
multi-hop neighbor information into node representations. CKAN
[39] adopts a heterogeneous propagation strategy to explicitly
encode cooperative and knowledge-aware signals, and uses a
knowledge aware attention mechanism to distinguish the sharing
of neighbors. KGAT [35] integrates user-item interaction graph
and knowledge graph and regards them as a collaborative knowl-
edge graph, recursively propagates the embeddings from the
entity’s neighbors to refine the entity’s embedding, and uses an
attention mechanism to distinguish the importance of different
neighbors. MVIN [27] learns item representations from the user
view and entity view, respectively, not only aggregating high-
order connection information, but also mixing the information of
layer-by-layer GCN. TGCN [7] uses type aware neighbor sampling
and aggregation operations to learn type-specific neighborhood
representations, and performs vertical and horizontal convolution
operations based on GCN networks to model multi-class unique
feature interactions. [52] is a dialogue-based recommendation
model that uses GNN to learn the word-side KG and item-side
KG separately and then bridges the semantic gap between the
two KGs based on mutual information maximization. KCAN [28]
is a model for refining and refining knowledge graphs, which auto-
matically extracts knowledge graphs into target-specific subgraphs
based on a knowledge-aware attention mechanism and then uses
conditional attention aggregation on the subgraphs to obtain
target-specific node representations. KGNCFRRN [49] incorporates
residual learning into traditional RNN networks to efficiently
encode long-term relational dependencies of KGs and embed users
and items into a newly designed 2D interaction graph.
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2.2. Contrastive learning-based methods

After contrastive learning became popular in the field of vision,
researchers applied the idea of contrastive learning to NLP, graph
data mining, and recommendation systems. The contrastive learn-
ing aims to minimize the distance between positive samples while
maximizing the distance between negative samples. InfoGraph
[25] maximizes the mutual information between representations
of graphs and substructures at different scales. GRACE [54] gener-
ates two views by corruption and learns node representations by
maximizing the consistency of node representations in these two
views. SGI [42] generates multiple views for each node of the
user-item bipartite graph, taking node self-discrimination as a
self-supervised task. MCCLK [55] constructs a global-level struc-
tural view, a local-level structural view and a semantic-level view
and performs contrastive learning at the local level and the global
level, and explores the semantic relationship between items in the
semantic-level view. NCL[19] constructs contrastive alignments
from structural neighbors and semantic neighbors, respectively,
and improves graph neural collaborative filtering. KGIC [56] first
constructs local and nonlocal graphs for user/item. Then an intra-
graph level interactive contrastive learning is performed within
each local/non-local graph, which contrasts layers of the CF and
KG parts, for more consistent information leveraging. KGCL[45] is
a KG-guided topological denoising framework. It creates contrast
views for the KG and the user-item interaction graph respectively
and improves the model robustness with augmented self-
supervision signals. C-KGAT[20] performs node embedding drop-
out (or edge dropout) on the CKG to generate different views, so
as to enhance the downstream contrastive learning. RGCL[23]
designs two additional contrastive learning tasks (i.e., Node Dis-
crimination and Edge Discrimination) to provide self-supervised
signals for the two components in recommendation process.
XSimGCL[46] discards the ineffective graph augmentations and
instead employs a simple yet effective noise-based embedding
augmentation to create views for contrastive learning. HCCF[43]
uses the hypergraph-enhanced cross view contrastive learning
architecture to jointly capture local and global collaboration and
effectively integrates the hypergraph structure encoding with
self-supervised learning to reinforce the representation quality of
recommender systems. However, the application of contrastive
learning to KGs-based recommendation system is less known.
Additionally, in this paper, we assume that users with similar rep-
resentations are within the semantic neighborhood, and incorpo-
rate these semantic neighbors into the prototype-contrastive
objectives.

2.3. Graph-based collaborative filtering

Early collaborative filtering models such as matrix factoriza-
tions project user and item IDs into embedding vectors and recon-
struct historical interactions to learn embedding parameters. GNNs
reveal the modeling of graph structure, especially k-hop neighbors,
to guide embedding learning. Graph-based collaborative filtering
organizes interaction data into a user-item interaction graph and
learns meaningful node representations from graph structure
information. NNCF [3] utilizes interaction information to obtain
interaction-based neighborhoods and integrates the neighborhood
information into neural collaborative filtering methods. GC-MC [4]
uses an autoencoder to generate latent features for user and item
nodes in passing information on a bipartite interaction graph,
and reconstructs the latent representations of users and items via
a bilinear decoder. SI-News [53] utilizes an attention GCN to
embed user interests from a user’s social novel, and optimizes
news headlines and contents through an attention mechanism to
improve news representations. SpectralCF [51] explores all possi-
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ble connectivity information between users and items through
spectral convolution operations. NGCF [36] utilizes the user-item
graph structure to propagate embeddings, effectively injecting col-
laboration signals into the embedding process in an explicit man-
ner, and exploiting higher order relations on the graph to improve
recommendation performance. LightGCN [13] removes feature
transformation and nonlinear activation on the basis of NGCF
[36]. It takes the weighted sum of the embeddings learned by all
layers as the final embedding, making the whole process concise
and efficient. GMCF [24] effectively leverages internal interactions
for the user and item feature learning (via graph learning) and
cross interactions for the preference matching (via graph match-
ing). Different from these models, we additionally emphasize the
modeling of users. On the one hand, we extract fuzzy interest sets
from the CKG to model users’ preferences; on the other hand, we
explore semantic neighbors for users and items to conduct con-
trastive learning at the node level.
3. Problem formulation

We describe the notations used in this paper in Table 1, then
present the related concepts and define the recommendation task.

Item Knowledge Graph. The auxiliary information on the item
side and the item set together constitute an item knowledge graph
G ¼ fðh; r; tÞjh; t 2 E; r 2 Rg, which describes the real-world items
and their compositional relationships. Nodes or entities in the item
knowledge graph (IKG) represent items, and edges describe the
relations between items. Each edge belongs to a relation type,
where R is a set of relation types. Taking a movie KG as an example,
(ForrestGump, ActedBy, TomHanks) illustrates that TomHanks
starred in ForrestGump. In this paper, entities and relations in the
item knowledge graph (IKG) were obtained directly from the pub-
lic datasets for experiments.

Collaborative Knowledge Graph. A collaborative Knowledge
Graph (CKG) encodes a user-item interaction graph and an item
knowledge graph (IKG) as a unified knowledge graph. A user-
item interaction graph regards user-item interactions as triples,
indicating that users interact with items, and vice versa. It is
defined formally asGinteraction ¼ fðu; yui; iÞju 2 U; i 2 Ig, where U and
I are the users set and the items set, yui ¼ 1 indicates that the user
interacts with the item, and yui ¼ 0 indicates no interaction. In this
paper, the user-item interaction graphs are also constructed from
the public datasets for experiments and connected with the item
knowledge graph into a CKG Gckg ¼ fðh; r; tÞjh; t 2 E0; r 2 R0g
whereE0 ¼ E [ U;R0 ¼ R [ fyuig .

Fuzzy Interest Set. A fuzzy interest set F ¼ f 1; f 2; f nf g is shared
by all users, and describes the user’s attitude towards the items.
Table 1
Notations and Explanations.

Notation Explanation

U a set of users
u user
I a set of items
i item
E a set of entities
R a set of KG relation types
A a set of item entity alignment
G Knowledge Graph
Gckg collaborative knowledge graph
Ginteraction user-item interaction graph
F a set of fuzzy interest
k the number of semantic neighbor groups
Nu the user’s neighbor nodes
Ni the item’s neighbor nodes
ŷu;i the score between user u and item i

106
Different fuzzy interests abstract different behavioral patterns of
users. For example, user u1 chooses one movie because he is a
fan of the protagonist, while user u2 chooses another movie
because he is attracted by the storyline. For the sake of under-
standing, we regard the protagonist and storyline as fuzzy interest
f 1 andf 2. Different fuzzy interests abstract different behavioral pat-
terns of users. That is, f 1 is the main factor that drives u1 to choose
this movie and f 2 is the main factor that drives u2 to choose the
other movie. The specific construction steps of a fuzzy interest
set are explained in detail in Section 4.2.1.

Semantic Neighbors. Semantic neighbors refer to nodes with
similar features in the CKG, which correspond to similar users or
similar items in real life. In particular, semantic neighbors may
not be directly reachable in CKG and we extract the center of the
semantic neighbor cluster and regard it as a prototype p to better
capture the semantic features of users or items. We explain seman-
tic neighbors in detail in Section 4.2.2.

Task Description. Input a CKGGckg , and output the probability
prediction function ŷu;i that the user adopting a certain item.

4. Methodology

In this section, we introduce the KAUR in detail. As shown in
Fig. 1, the model framework mainly consists of two parts:

(1) Message propagation and aggregation. Consider each node
in the CKG and its k-hop ðk ¼ 1; :::;nÞ neighbor information
as positive contrastive pairs. We use contrastive learning
to narrow the gap between them and then aggregate the
information from the neighbors to update the node
representation.

(2) Fuzzy interest extraction and user representation
enhancement. (a) Internal factors modeling. Generate fuzzy
interest sets from relation sets in CKG, emphasizing the
maximization of element differences in sets. (b) External fac-
tors modeling. The semantic neighbors of each node in the
CKG are incorporated into contrastive learning to better cap-
ture the semantic features of users.

4.1. Message propagation and aggregation

To obtain the preliminary representation of individual node in
the CKG, we use a GNN-based method for message aggregation
and propagation. Specifically, similar to the operation of LightGCN
[13], we abandon the use of feature variation and nonlinear activa-
tion. The graph convolution operations for users, items and entities
are defined in Eq. (1), (2), (3) and (4).

eðkþ1Þ
u ¼

X
i2Nu

1ffiffiffiffiffiffiffiffiffijNuj
p ffiffiffiffiffiffiffiffijNij

p eki ð1Þ

eðkþ1Þ
i ¼

X
u2Ni

1ffiffiffiffiffiffiffiffijNij
p ffiffiffiffiffiffiffiffiffijNuj

p eku ð2Þ

eðkþ1Þ
h ¼

X
t2Nh

1ffiffiffiffiffiffiffiffiffijNhj
p ffiffiffiffiffiffiffiffijNt j

p ekt ð3Þ

eðkþ1Þ
t ¼

X
h2Nt

1ffiffiffiffiffiffiffiffijNtj
p ffiffiffiffiffiffiffiffiffijNhj

p ekh ð4Þ

where eðkÞx ðx ¼ i;u; h; tÞ represents the embedding of user, item, head
entity and tail entity after kðk ¼ 1;2; � � � ;nÞ layers of propagation,
Nxðx ¼ i; u;h; tÞ represents the neighbor node connected tox ,

1ffiffiffiffiffiffi
jNu j

p ffiffiffiffiffi
jNi j

p and 1ffiffiffiffiffiffi
jNh j

p ffiffiffiffiffiffi
jNt j

p are symmetric normalization coefficients



Fig. 1. Illustration of the proposed KAUR.
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[41], which avoid the complex calculation when the embedding
scale is too large. Using Eq. (4) as an example, Nt represents the
neighbor node set (head entity set) connected by the tail entity et ,
and Nh represents the neighbor node set (tail entity set) connected
by the head entity eh.

To further enrich the node representation in the CKG, we per-
form contrastive learning on each node and its neighbors. The rep-
resentation of neighbor information is obtained through the above
graph convolution operation. The k - th layer output in GCN is the
weighted sum of the node’s k hop neighbor information. That is to
say that the output of the k - th layer is aligned with this node as a
positive contrastive pair and the distance between them is mini-
mized. Based on InfoNCE [21], we propose the Eq. (5) as the loss
function for users.

Lussl ¼
X
u2U

� log
expððeku � e0u=sÞÞP

u02Uexpððeku � e0u0=sÞÞ
ð5Þ

where eðkÞu is the normalized output of the GCN layerk , s is the tem-

perature hyper parameter for softmax. Similarly, we compute Lissl on
the item side and Lessl on the CKG entity side. The total loss function
is a weighted sum of the three loss functions:

Lssl ¼ aLussl þ bLissl þ cLessl ð6Þ
where a;b; c are hyper parameters used to balance the weights.
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4.2. Fuzzy interest extraction and user representation enhancement

4.2.1. Fuzzy interest extraction (Internal factors)
We believe that users will be affected by an internal factor

when selecting items—fuzzy interest sets, which are common to
all users. For a movie-related example, some users like a movie
because of actors, some users are interested in a movie because
of genres, and some users are fans of directors. Different combina-
tions of these vague interests of actors, genres and directors affect
users’ preferences for movies.

Considering that there is a significant set of relations in CKG, we
do not consider a single relation in isolation. Because if we don’t
consider the interaction and combination of relations, it’s impossi-
ble to refine the advanced concept of fuzzy interests. For example,
the combination of relations r1 and r2 has an impact on fuzzy inter-
estf 1, while relations r3 and r4 make a different contribution to
fuzzy interestf 2. So we regard a fuzzy interest as a combination
of relations and use attention strategies to create it:

ef ¼
X
r2R

pðr; f Þer ð7Þ

where ef and er are the embedding of fuzzy interest and relation in
CKG. pðr; f Þ is the attention score for generating fuzzy interests,
which controls the proportion of relation embedding in fuzzy inter-
ests. pðr; f Þ is calculated in Eq. (8)
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pðr; f Þ ¼ expðwrÞP
r02Rexpðwr0 Þ ð8Þ

where wr0 is the trainable weight of fuzzy interest in specific rela-
tions and features. The attention score is not for a specific user,
but refined to all users.

Using the above example of a movie recommendation. It can be
seen that the semantic differences between the three fuzzy inter-
ests of actors, genres and directors are very obvious. Therefore,
we need to maximize the differences between the elements in
the fuzzy interest sets and reduce the interdependence, so that it
can effectively describe the behavior patterns of users.

We compute the correlation distance minimization loss func-
tion [37] to emphasize the differences in fuzzy interests, which
are the linear and nonlinear correlation of any two variables:

Ldistance ¼
X

f ;f 02F;f–f 0

dCovðef ; ef 0 Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dVarðef Þ � dVarðef 0 Þ

q ð9Þ

where dCovð�Þ is the distance covariance of the two ambiguous
interests and dVarð�Þ is the distance variance of each ambiguous
interest. Fuzzy interests are independent of each other, giving users
better interpretability.

4.2.2. User representation enhancement (External factors)
Inspired by traditional collaborative filtering algorithms, we

know that users are influenced by semantic neighbors (similar
users and similar items) when selecting items. To capture the
semantic features of users and items in collaborative filtering, we
learn latent prototypes of users and items to identify semantic
neighbors.

Similar users or items tend to fall in neighboring embedding
spaces and the prototypes are the center of clusters that represent
a group of semantic neighbors. We use K-means clustering algo-
rithm to get the prototypes of users and items. As shown in
Fig. 2, user/item nodes need to minimize the difference from pro-
totype in a semantic neighbor set and maximize the difference
from other prototypes. Also, based on InfoNCE [41], we propose a
contrastive learning loss function between users and their
prototypes:

LPUssl ¼
X
u2U

� log
expðeu � pi=sÞP
pj2Pexpðeu � pj=sÞ

ð10Þ

where pi is the prototype of useru , K-means algorithm is used to
cluster the embedding of the user set and the users are divided into
Fig. 2. Semantic Neighbor Set and Prototype.
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k categories. Similarly we get the contrastive learning loss function
of the items and its prototype, the complete loss function is the
weighted sum of the two:

LPssl ¼ aLPUssl þ bLPIssl ð11Þ
In this way, consider the influence of similar users with similar

items, which further strengthens the user representation through
graph convolution operations. It conforms to the actual situation,
thereby bringing interpretability to the recommender system.
4.3. Model prediction

After k-layer propagation, the weighted sum operation is per-
formed on the representations of all layers, as shown in Eq. (12).
The definition of Eq. (12) is inspired by LightGCN [13]. Before defin-
ing Eq. (13), we calculate the higher-level neighbor embedding of
users and items in Eq. (1) and (2). The meaning of Eq. (12) is that
after k layers propagation, we obtaink + 1 embeddings to describe

a user (eð0Þu ; eð1Þu ; eðkÞu ) and an item (eð0Þi ; eð1Þi ; eðkÞi ), and then sum and
average the embedded values obtained from each layer to form
the final representation of the user and item.

eu ¼ 1
kþ 1

Xk

k¼0

eðkÞu ; ei ¼ 1
kþ 1

Xk

k¼0

eðkÞi ð12Þ

where ei represents the final representation of the item, and we
aggregate the fuzzy interest set with the user representation eu to
generate the final representation of the user:

eu ¼
X
f2F

pðu; f Þef � eu þ eu ð13Þ
p u; fð Þ ¼
exp eTf eu

� �

P
f 02F exp eT

f 0eu
� �

Þ
ð14Þ

where pðu; f Þ is the attention score that differentiates the impor-
tance of fuzzy interests, indicating that different fuzzy interests will
prompt users to behave differently. In this way, the user’s fuzzy
interests set is integrated into the user’s final representation.

Finally, we do an inner product of the user representation and
the item representation to predict its matching score:

ŷu;i ¼ eTuei ð15Þ
4.4. Loss computing

To optimize the model, we employ a Bayesian personalized
ranking BPR loss function. It assumes that observed interactions
(indicating more user preferences) should be assigned higher pre-
diction scores than unobserved interactions:

LBPR ¼
X

ðu;i;jÞ2O
� logrðŷu;i � ŷu;jÞ ð16Þ

where rð�Þ is the sigmoid function, O ¼ fðu; i; jÞjðu; iÞ 2 Rþ;

ðu; jÞ 2 R�g represents the training set, Rþ represents the observed
(positive) interactions between user u and itemi , and R� is the sam-
pled set of unobserved (negative) interactions.

The final loss function is:

L ¼ LBPR þ Lssl þ Ldistance þ LPssl þ kjjHjj22 ð17Þ

where H is the parameter set and k is the parameter for L2
regularization.



Table 2
Statistics of the datasets.

MovieLens-1 M Amazon-book LFM-1b

#User 6041 8724 4862
#Item 3707 7392 9233
#Interaction 1,000,209 274,795 1,241,584
#Entity 79,399 19,281 28,877
#Relation Type 51 22 8
#Triplet 385,923 71,497 60,957
Density 0.04466 0.00426 0.02765
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5. Experiments

In this section, we use three real datasets from different
domains to evaluate the KAUR. We first introduce the three data-
sets in Section 5.1, and then discuss the experiment settings and
results in Section 5.2 and 5.3. Furthermore, we also conduct abla-
tion study and sensitivity analysis in Section 5.4 and 5.5,
respectively.

5.1. Datasets

To evaluate the KAUR, we conduct experiments in three differ-
ent scenarios: movies, books, andmusic. All three datasets are pub-
licly accessible and vary in size and sparsity. Table 2 presents the
statistics of the datasets.

� MovieLens-1M1:This is a classic movie recommendation dataset,
which contains about 1 million explicit ratings (ranging from 1 to
5) for 3707 movies from 6041 users.

� Amazon-book2:It is a frequently used Amazon book dataset,
which includes user rating data (ratings) and book metadata (de-
scription, category information, price, and brand).

� LFM-1b3:This is a music dataset collected from the online Last.FM
system, which contains music listening events created by Last.FM
users.

5.2. Experiment settings

5.2.1. Baselines
To demonstrate the effectiveness of our proposed model, we

compare it with recent state-of-the-art KGs-based recommenda-
tion models, including KGAT, KGCN, KGNNLS, RippleNet, CFKG,
MKR, and KGIN.

� KGAT [35] is a model that applies GAT to CFKG, which explicitly
models higher-order connectivity in CKG in an end-to-end man-
ner. In the propagation process, KGAT uses an attention mech-
anism to distinguish the importance of neighbor nodes and
adaptively propagates embeddings from neighbor nodes to
update node representations.

� KGCN [34] learns the structural information and semantic infor-
mation of KGs and uses GCN to collect high-order neighborhood
information from the IKG, which can iteratively integrate neigh-
borhood information to enrich item embeddings.

� KGNNLS [32] applies the GNN architecture to KGs by using
user-specific relation scoring functions and aggregating neigh-
borhood information with different weights. This proposed
label smoothness constraint provides a strong regularization
for learning edge weights in KGs.

� RippleNet [30] is a method similar to memory network propa-
gation, which can automatically propagate user preferences in
the KG and explore users’ hierarchical interests in the KG.

� CFKG [1] integrates user behavior and item knowledge into a
unified graph structure and recommends reasonable predic-
tions converted into triples, which can build explanations about
recommended items by exploring paths in the graph embed-
ding space.

� MKR [33] is a multi-task learning framework that utilizes
knowledge graph embedding tasks to assist recommendation
tasks. It can automatically learn higher-order interactions of
item and entity features and transfer knowledge between tasks.
1 https://grouplens.org/datasets/movielens/.
2 https://jmcauley.ucsd.edu/data/amazon/.
3 https://www.cp.jku.at/datasets/LFM-1b/.
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� KGIN [37] illustrates the connections between users and items
by exploring intents, combining intents with knowledge graph
relations and considering user-item relations with finer intent
granularity and long-term semantics of relational paths under
the GNN paradigm.

5.2.2. Evaluation metrics
To evaluate the effectiveness of top-k recommendation and

preference ranking, we use the following two widely evaluated
metrics: Recall@K and NDCG@K, where K=[10,20,50]. Recall@K
describes a measure of the proportion of related items among all
items. NDCG@K (also known as Normalized Discounted Cumula-
tive Gain) is a measure of ranking quality that explains the position
of hits by assigning higher scores to top-ranked hits. The calcula-
tion formulas are:

Recall@K ¼ 1
jUj

X
u2U

jR̂ðuÞ \ RðuÞj
jRðuÞj

NDCG@K ¼ 1
jUj

X
u2U

PK
i¼1dði 2 RðuÞÞ 1

log2ðiþ1ÞPminðjRðuÞj;KÞ
i¼1

1
log2ðiþ1Þ

where RðuÞ represents the list of the top-k recommended items, and

R̂ðuÞ represents the number of items actually accessed by the users.
dð�Þ is an indicator function, dðxÞ ¼ 1 if x is true and 0 otherwise. We
randomly select 80 % of interactions as training data and 10 % of
interactions as validation data. The remaining 10 % of interactions
are used for performance comparisons. We uniformly sample a neg-
ative item for each positive example to form the training set.

5.2.3. Parameter settings
To ensure the fairness of the experiments, we adopt the same

operation dimension and item embeddings for our KAUR and the
other baselines. We use Xavier [11] to initialize the model param-
eters and Adam to optimize the model. Since RecBole [50] includes
most baseline implementations and corresponding parameter con-
figurations, we select a reasonable parameter configuration and
compare the original papers in each baseline with the super
parameters provided by RecBole. The embeddings of all models
are fixed to 64, where the batch size is set to 1024. The learning
rate is explored between {0.0001, 0.0005, 0.001, 0.0015}. The size
of the fuzzy interest set is controlled at 2, 3, 4, 5. The division range
of semantic neighbors is in 100, 500, 800, 1000, 1500. The L2 nor-
malization coefficients are set inf10�5;10�4; :::;10�1g. We explore
the effect of depth in the range {1, 2, 3, 4}. For the baselines, we
use their default hyper-parameter settings except for the embed-
ding dimension. To prevent overfitting, we control the number of
steps for training convergence and set it to 50.

5.3. Results

Table 3 compares KAUR with the Top-k recommendations of
other baselines. The best results are shown in bold, and the
second-best results are underlined. Improv. Indicates the percent

https://grouplens.org/datasets/movielens/
https://jmcauley.ucsd.edu/data/amazon/
https://www.cp.jku.at/datasets/LFM-1b/


Table 3
Performance comparisons of different recommendation models (The best result is bolded and the runner-up is underlined).

Without GNN-based methods GNN-based methods Improv.

Dataset Metric RippleNet MKR CFKG KGCN KGNNLS KGAT KGIN KAUR

MovieLens-1 M Recall@10 0.1138 0.1361 0.1518 0.1383 0.1322 0.1625 0.1708 0.1746 2.22 %

NDCG@10 0.1937 0.213 0.24 0.2213 0.2278 0.2531 0.2627 0.2709 3.12 %

Recall@20 0.1963 0.2196 0.2359 0.2188 0.2289 0.2491 0.262 0.266 1.57 %

NDCG@20 0.2005 0.2239 0.2473 0.2264 0.2327 0.2605 0.2701 0.2768 2.48 %

Recall@50 0.3414 0.3801 0.399 0.3697 0.3864 0.4078 0.4139 0.4258 2.88 %

NDCG@50 0.2397 0.2663 0.2849 0.266 0.2776 0.3 0.3093 0.316 2.17 %

Amazon-book Recall@10 0.0696 0.0824 0.1156 0.0824 0.0976 0.1158 0.1555 0.164 5.47 %

NDCG@10 0.0427 0.0501 0.074 0.0514 0.0604 0.0749 0.1013 0.1095 8.09 %

Recall@20 0.1187 0.1515 0.1755 0.1388 0.1566 0.1813 0.2287 0.2401 4.98 %

NDCG@20 0.0588 0.0735 0.0909 0.0687 0.0791 0.0935 0.1237 0.1328 7.36 %

Recall@50 0.2298 0.2728 0.3138 0.2105 0.2859 0.2861 0.3551 0.3711 4.51 %

NDCG@50 0.0875 0.1036 0.1269 0.0768 0.1123 0.1149 0.1553 0.1655 6.57 %

LFM-1b Recall@10 0.0907 0.076 0.0829 0.0785 0.0837 0.0997 0.1152 0.1282 11.28 %

NDCG@10 0.1895 0.1419 0.1496 0.143 0.1498 0.1906 0.2231 0.2463 10.40 %

Recall@20 0.1479 0.1233 0.1311 0.1292 0.1318 0.1518 0.1737 0.1861 7.14 %

NDCG@20 0.1867 0.1435 0.1496 0.1455 0.15 0.1837 0.2146 0.2324 8.29 %

Recall@50 0.2628 0.2202 0.233 0.2342 0.2376 0.2569 0.2842 0.2922 2.81 %

NDCG@50 0.2108 0.1662 0.174 0.1772 0.1763 0.2044 0.2332 0.2479 6.30 %

Table 4
Ablation Study of the KAUR.

Dataset Metric w/o F w/o S w/o C KAUR

MovieLens-1M Recall@10 0.167 0.1724 0.1708 0.1746
NDCG@10 0.2647 0.2693 0.2677 0.2709
Recall@20 0.2543 0.2632 0.2597 0.266
NDCG@20 0.2688 0.2747 0.2726 0.2768
Recall@50 0.4109 0.4204 0.4189 0.4258
NDCG@50 0.3058 0.3125 0.311 0.316

Amazon-book Recall@10 0.1569 0.1498 0.1499 0.1587
NDCG@10 0.1065 0.1023 0.1016 0.1072
Recall@20 0.2364 0.2285 0.2267 0.2376
NDCG@20 0.1306 0.1261 0.1249 0.1314
Recall@50 0.3688 0.3619 0.365 0.3701
NDCG@50 0.1614 0.1594 0.1592 0.1643

LFM-1b Recall@10 0.1147 0.1216 0.1109 0.1282
NDCG@10 0.227 0.2383 0.21 0.2463
Recall@20 0.1702 0.1793 0.166 0.1861
NDCG@20 0.215 0.2251 0.2017 0.2324
Recall@50 0.2798 0.2383 0.2724 0.2922
NDCG@50 0.2331 0.2417 0.2218 0.2479
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improvement of the best score compared to the second. we can
find the following results:

� Overall, our KAUR yielded the best performance on all datasets.
In particular, KAUR outperforms the strongest baseline KGIN,
and improves by 2.22 %, 5.47 %, and 11.28 % on the Recall@10
indicator. This demonstrates the effectiveness of KAUR, which
we attribute to the following two points: (1) The fuzzy interest
set is extracted from the CKG, and the influence of similar users
(or items) during user interaction is considered. (2) Contrastive
learning is adopted, which more effectively captures informa-
tion from higher-order neighbors and further strengthens node
representation. The entire process reinforces the user’s repre-
sentation and is realistic. Additionally, we find that KAUR has
a higher boost for music and books than movies, because of
Amazon-book and Last.FM are sparser than MovieLens-1M.

� KAUR, KGIN, KGAT, KGNNLS, and KGCN are all models that use
GNN (GAT). Among them, KAUR, KGIN, and KGAT are much bet-
ter than other models that do not use GNN. However, on the
MovieLens-1M and Last.FM datasets, the performance of
KGNNLS is only better than that of RippleNet and MKR, and
KGCN is only better than RippleNet, both of which are inferior
to CKG. This is because KGCN and KGNNLS only strengthen
the representation of project nodes through the entity nodes
of the knowledge graph, ignoring the representation of user
nodes and explicit cooperation signals, and do not make full
use of the knowledge graph. KAUR, KGIN, and KGAT model
users well and all effectively use of the relations set in the
knowledge graph.

� As a model without GNN, CFKG outperforms RippleNet and
MKR on MovieLens-1M and Last.FM datasets. Similar to KAUR,
KGIN, and KGAT, CFKG integrates user behavior and item
knowledge into a unified graph structure. And CFKG explores
paths in the graph embedding space to construct reasonable
explanations for items. To our surprise, RippleNet performs
slightly better than KGCN, KGNNLS, CFKG on the Last.FM. The
reason for this is likely that the average number of user interac-
tions is much larger than the first two datasets. In this scenario,
RippleNet may be more suitable. RippleNet will automatically
explore possible paths from the user’s historically interacted
item set to candidate items, and iteratively expand the user’s
interests on the knowledge graph.
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5.4. Ablation study

KAUR learns to strengthen nodes representation by comparing
the information of nodes and neighbor nodes in CKG, and models
user fuzzy interest sets and similar users (similar items). To test
the effectiveness of contrastive learning, user fuzzy interest sets,
and similar users (similar items), we remove the corresponding
modules of these three parts from the model structure to test the
performance of KAUR. We consider the following KAUR variants
for comparison in Table 4.

� w/o F: This variant removes the fuzzy set of interests.
� w/o S: This variant removes similar users (similar items).
� w/o C: This variant removes contrastive learning.

As can be seen in Table 4, all our proposed techniques or mod-
ules help to improve the final performance. Taken together, the
variables w/o F and w/o C have the worst performance, indicating
the importance of fuzzy interest sets and contrastive learning for
user representation enhancement and CKG node representation,
respectively. The result of variable w/o S shows that it is still nec-
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essary to capture the influence of semantic neighbors (similar
nodes) to further enhance the user representation, which is also
in line with the actual situation. Although the performance of w/
o S is the best of the three variables, it cannot be said that w/o S
is less important than w/o F and w/o C. This is because for conve-
nience, our modeling of user semantic neighbors is not fine-
grained enough, and the dataset also does not have sufficient con-
nectivity. Taken together, these ablation studies confirm that all
three components of KAUR are useful to augment user representa-
tions with fuzzy interest levels with semantic neighbors (similar
nodes) and improve performance through contrastive learning.
The three components complement each other to significantly
improve recommendation results.
5.5. Sensitivity analysis

5.5.1. Impact of fuzzy interest set
In order to analyze the effect of the number of fuzzy interest

sets, we change the size in the range of [0, 2, 3, 4, 5]. In Fig. 3,
the change curves of Recall@20 and NDCG@20 on the three data-
sets are shown.

We can find from Fig. 3 that changes in the number of fuzzy
interest sets affect the model’s performance, which also shows that
the modeling of fuzzy interests is effective. When fj j ¼ 3, KAUR per-
forms best on MovieLens-1 M and LFM1b. When fj j ¼ 5, KAUR per-
forms best on Amazon-book. On the whole, the higher the number
of fuzzy interest sets in some cases, the better model’s perfor-
mance. But sometimes too much detail (the larger the number)
of the fuzzy interest set division means that the elements in this
set cannot effectively contain useful information. The two most
extreme ways are: (1) When the number of fuzzy interests is 0,
it corresponds to w/o F in Section 5.4. Through the ablation exper-
iments, we know that the performance of KAUR is degraded when
the fuzzy interest sets do not exist. (2) When the number of fuzzy
interests is equal to the number of relations, the fuzzy interest sets
correspond to the relations as well and the fuzzy interests are too
clear to represent the intentions of all users. To sum up, we need to
determine the number of fuzzy interests in an interval while
Fig. 3. Impact of fuzzy

Fig. 4. Impact of the se
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ensuring that they are independent of each other, to improve the
performance of the model.
5.5.2. Impact of the semantic neighbors
To study the effect of semantic neighbors (similar users or sim-

ilar items), we vary the size in the range [0,100, 500, 800, 1500]. In
Fig. 4, the change curves of Recall@20 and NDCG@20 on the three
datasets are shown.

We found that setting different k values can significantly affect
model performance. When k ¼ 0 the experimental results corre-
spond to w/o S in Section 5.4.1. We found that on Amazon-book
and LFM-1b, the role of semantic neighbors is very obvious. One
possible reason is that the two datasets are sparse. Similar seman-
tic neighbors can be better divided during the clustering process,
and the influence of centroid neighbors can be effectively learned.
This also illustrates the importance of semantic neighbors. On the
MovieLens1M dataset, sometimes introducing semantic neighbors
may also have a negative impact: whenk ¼ 100, the results are not
very ideal. This is because the MovieLens-1 M dataset is not very
sparse compared to the other two datasets. When the value of k
is small, the semantic neighbor division is too much detailed,
which may introduce additional noise when learning the influence
of centroid neighbors. We also find in Fig. 4 that the performance of
KAUR degrades for large values of k for all datasets. This is because
as the value of k increases, the division of semantic neighbors will
be very rough, and the influence of learning semantic neighbors
becomes ineffective. This situation is also in line with real life.
For example, users with similar hobbies tend to be a small number
of people, not the vast majority. Therefore, the choice of the k value
should be determined according to the situation, in order to
enhance the user representation further and improve the system
performance.
5.5.3. Impact of the layer
We vary the number of propagation layers of KAUR in the range

{1, 2, 3, 4} to study the effect of different layers. The performance
comparisons on movie, book and music datasets are shown in
Table 5.
interest number.

mantic neighbors.



Table 5
Ablation Study of the KAUR.

MovieLens-1M Amazon-book LFM-1b

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

Layer = 1 0.2657 0.2731 0.2334 0.129 0.1819 0.2286
Layer = 2 0.266 0.2768 0.2401 0.1328 0.1861 0.2324
Layer = 3 0.2489 0.2535 0.2325 0.1299 0.1756 0.2092
Layer = 4 0.2277 0.2388 0.2227 0.1233 0.1635 0.1869
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We can find from Table 5 that when Layer = 2, all three datasets
achieve the best performance. This shows that increasing the
appropriate number of layers can improve performance. We attri-
bute this to higher-order neighbor information among users, items,
and entities, which can enhance modeling. As the number of layer
increases, the model performance decreases sequentially because
more stacking used only to introduce more noise. According to dif-
ferent scenarios, we need to reasonably control the number of
propagation layer to maximize the use of neighbor information.

5.5.4. Impact of loss weight
From Eq. (6), (11), and (17), there are four parameters of the loss

functions, which are a, b, c and k. In order to measure the impact of
various parameters on the model performance, we conducted
experiments on the MovieLens-1 M dataset. According to experi-
ence, we vary a, b, c and k in {10�8;10�7;10�6;10�4;10�2;1}. To
study the influence of a single parameter, we must control the
other three parameters unchanged. For example, we set the value
of parameter b and c to10�7, the value of parameter k to10�4,
and observe the change of model performance by varying a. The
sensitivities of these hyper-parameters are shown in Fig. 5.

From Fig. 5, we can find that when other parameters are deter-
mined, the change of a will affect the performance of the model.
But this effect is less than that caused by the change of b, c and
k. Because KAUR is designed to enhance user modeling, while a
describes the weight of a subtask loss function under user
Fig. 5. Performance comparison
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enhancement, varying the value of a will not have a huge impact
on the performance of the entire model. However, b and c are
the weights of loss functions in item modeling and CKG modeling,
respectively. When the values of b and c are increased, that is, too
much attention is paid to the task of item modeling and CKG mod-
eling, the model performance will be greatly reduced. k is the
parameter for L2 regularization. Compared with the other three
parameters, it is not so important, but too large will also affect
the performance of the model. To sum up, we need to choose
appropriate values for parameters to ensure the best performance.
5.5.5. Other GNN Backbones
Since we use the LightGCN-based architecture for message

aggregation and propagation on the CKG, i.e., the operations on
the CKG are model-independent, we will further test its perfor-
mance with other GNN-based architectures. The results are shown
in Fig. 6. From the figure, we can observe that using LightGCN-
based architecture consistently achieves the best performance on
the three datasets, which further validates the effectiveness of
our proposed method. In addition, the performance drops sequen-
tially on NGCF and SpectralCF architectures. This is because Spec-
tralCF performs eigen-decomposition on the adjacency matrix of
bipartite graphs to discover connections between users and items.
It is not suitable for operating on CKGs and feigen-decomposition
will lead to high computational complexity, which unsuitable for
large-scale recommendation scenarios. NGCF explicitly encodes
w.r.t different a, b, c and k.
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cooperative signals in the form of higher-order connectivity
through embedding propagation. However, when designing NGCF,
two components are used: feature transformation and nonlinear
activation, which are experimentally proved to increase the train-
ing difficulty and reduce the recommendation performance. Com-
pared to the first two GNN architectures, LightGCN is lighter and
more efficient. It only contains the neighborhood aggregation com-
ponent, which is suitable for message dissemination and aggrega-
tion in CKGs.
6. Conclusion and future work

In this work, we propose a novel Knowledge Augmented User
Representation Model, KAUR. This model emphasizes the impor-
tance of users in the recommendation task, and introduces the idea
of contrastive learning into CKGs. Our idea comes from the fact
that in the past behavior of users interacting with items, we found
that users will initially have a general preference, and users will be
113
affected by similar users and similar items when selecting items.
Therefore, we strengthen the users representation from two
aspects: internal and external factors: (1) Fuzzy interest extraction.
The users’ intrinsic preference is modeled using the relation set in
the CKG, which is common to all users. (2) User-enhanced repre-
sentation. We use a clustering algorithm to find out the centroids
of similar user sets and similar item sets, and compare them with
user nodes or item nodes to capture potential impacts.

Currently, our user modeling is static. The influence of users’
internal and external factors changes dynamically over time. In
future work, we hope to introduce time series information into
the process of user modeling, explore the behavior habits of users
at different time stages, and reveal the changing laws of users’
fuzzy interests and external influences. In addition, to explore of
semantic neighbors (similar nodes), we hope to introduce the user
social network and item relationship network to capture the influ-
ence of semantic neighbors in a more fine-grained way.
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